Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 109 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Krylov Complexity in Lifshitz-type Scalar Field Theories (2307.08307v2)

Published 17 Jul 2023 in hep-th, cond-mat.stat-mech, and quant-ph

Abstract: We investigate various aspects of the Lanczos coefficients in a family of free Lifshitz scalar theories, characterized by their integer dynamical exponent, at finite temperature. In this non-relativistic setup, we examine the effects of mass, finite ultraviolet cutoff, and finite lattice spacing on the behavior of the Lanczos coefficients. We also investigate the effect of the dynamical exponent on the asymptotic behavior of the Lanczos coefficients, which show a universal scaling behavior. We carefully examine how these results can affect different measures in Krylov space, including Krylov complexity and entropy. Remarkably, we find that our results are similar to those previously observed in the literature for relativistic theories.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (72)
  1. J. M. Deutsch, “Quantum statistical mechanics in a closed system,” Phys Rev A.43 2046 (1991), doi :10.1103/PhysRevA.43.2046.
  2. M. Srednicki, “Chaos and Quantum Thermalization,” doi:10.1103/PhysRevE.50.888 [arXiv:cond-mat/9403051 [cond-mat]].
  3. L. D’Alessio, Y. Kafri, A. Polkovnikov and M. Rigol, “From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics,” Adv. Phys. 65 (2016) no.3, 239-362 doi:10.1080/00018732.2016.1198134 [arXiv:1509.06411 [cond-mat.stat-mech]].
  4. M. Srednicki, “The approach to thermal equilibrium in quantized chaotic systems,” J. Phys. A32 (1999) 1163, doi:10.1088/0305-4470/32/7/007.
  5. S. H. Shenker and D. Stanford, “Multiple Shocks,” JHEP 12 (2014), 046 doi:10.1007/JHEP12(2014)046 [arXiv:1312.3296 [hep-th]].
  6. S. H. Shenker and D. Stanford, “Black holes and the butterfly effect,” JHEP 03 (2014), 067 doi:10.1007/JHEP03(2014)067 [arXiv:1306.0622 [hep-th]].
  7. J. Maldacena, S. H. Shenker and D. Stanford, “A bound on chaos,” JHEP 08 (2016), 106 doi:10.1007/JHEP08(2016)106 [arXiv:1503.01409 [hep-th]].
  8. A.  Kitaev,“A Simple Model of Quantum Holography,” http:// online.kitp.ucsb.edu/online/entangled15/kitaev/.
  9. S.  Sachdev and J.  Ye, “Gapless Spin-Fluid Ground State in a Random Quantum Heisenberg Magnet,” Phys. Rev. Lett. 70, 3339 (1993).
  10. J. Maldacena and D. Stanford, “Remarks on the Sachdev-Ye-Kitaev model,” Phys. Rev. D 94 (2016) no.10, 106002 doi:10.1103/PhysRevD.94.106002 [arXiv:1604.07818 [hep-th]].
  11. B. V. Fine, T. A. Elsayed, C. M. Kropf, and A  S. de Wijn, “Absence of Exponential Sensitivity to Small Perturbations in Nonintegrable Systems of Spins 1/2” Phys. Rev. E 89, 012923 (2014).
  12. S. Xu and B. Swingle, “Accessing scrambling using matrix product operators,” Nature Phys. 16 (2019) no.2, 199-204 doi:10.1038/s41567-019-0712-4 [arXiv:1802.00801 [quant-ph]].
  13. D.  E.  Parker, X.  Cao, A.  Avdoshkin, T.  Scaffidi, and E. Altman, “A Universal Operator Growth Hypothesis,,, Phys. Rev. X 9, 041017 (2019).
  14. J. L. F. Barbón, E. Rabinovici, R. Shir and R. Sinha, “On The Evolution Of Operator Complexity Beyond Scrambling,” JHEP 10 (2019), 264 doi:10.1007/JHEP10(2019)264 [arXiv:1907.05393 [hep-th]].
  15. A. Avdoshkin and A. Dymarsky, “Euclidean operator growth and quantum chaos,” Phys. Rev. Res. 2 (2020) no.4, 043234 doi:10.1103/PhysRevResearch.2.043234 [arXiv:1911.09672 [cond-mat.stat-mech]].
  16. A. Dymarsky and A. Gorsky, “Quantum chaos as delocalization in Krylov space,” Phys. Rev. B 102 (2020) no.8, 085137 doi:10.1103/PhysRevB.102.085137 [arXiv:1912.12227 [cond-mat.stat-mech]].
  17. E. Rabinovici, A. Sánchez-Garrido, R. Shir and J. Sonner, “Operator complexity: a journey to the edge of Krylov space,” JHEP 06 (2021), 062 doi:10.1007/JHEP06(2021)062 [arXiv:2009.01862 [hep-th]].
  18. X. Cao, “A statistical mechanism for operator growth,” J. Phys. A 54 (2021) no.14, 144001 doi:10.1088/1751-8121/abe77c [arXiv:2012.06544 [cond-mat.stat-mech]].
  19. A. Dymarsky and M. Smolkin, “Krylov complexity in conformal field theory,” Phys. Rev. D 104, no.8, L081702 (2021) doi:10.1103/PhysRevD.104.L081702 [arXiv:2104.09514 [hep-th]].
  20. F. B. Trigueros and C. J. Lin, “Krylov complexity of many-body localization: Operator localization in Krylov basis,” SciPost Phys. 13 (2022) no.2, 037 doi:10.21468/SciPostPhys.13.2.037 [arXiv:2112.04722 [cond-mat.dis-nn]].
  21. N. Hörnedal, N. Carabba, A. S. Matsoukas-Roubeas and A. del Campo, “Ultimate Speed Limits to the Growth of Operator Complexity,” Commun. Phys. 5 (2022), 207 doi:10.1038/s42005-022-00985-1 [arXiv:2202.05006 [quant-ph]].
  22. V. Balasubramanian, P. Caputa, J. M. Magan and Q. Wu, “Quantum chaos and the complexity of spread of states,” Phys. Rev. D 106 (2022) no.4, 046007 doi:10.1103/PhysRevD.106.046007 [arXiv:2202.06957 [hep-th]].
  23. Z. Y. Fan, “Universal relation for operator complexity,” Phys. Rev. A 105 (2022) no.6, 062210 doi:10.1103/PhysRevA.105.062210 [arXiv:2202.07220 [quant-ph]].
  24. R. Heveling, J. Wang and J. Gemmer, “Numerically probing the universal operator growth hypothesis,” Phys. Rev. E 106 (2022) no.1, 014152 doi:10.1103/PhysRevE.106.014152 [arXiv:2203.00533 [cond-mat.stat-mech]].
  25. B. Bhattacharjee, X. Cao, P. Nandy and T. Pathak, “Krylov complexity in saddle-dominated scrambling,” JHEP 05 (2022), 174 doi:10.1007/JHEP05(2022)174 [arXiv:2203.03534 [quant-ph]].
  26. K. Adhikari and S. Choudhury, “C𝒞𝒞{\cal C}caligraphic_Cosmological K𝒦𝒦{\cal K}caligraphic_Krylov C𝒞𝒞{\cal C}caligraphic_Complexity,” Fortsch. Phys. 70, no.12, 2200126 (2022) doi:10.1002/prop.202200126 [arXiv:2203.14330 [hep-th]].
  27. K. Adhikari, S. Choudhury and A. Roy, “Krylov Complexity in Quantum Field Theory,” Nucl. Phys. B 993, 116263 (2023) doi:10.1016/j.nuclphysb.2023.116263 [arXiv:2204.02250 [hep-th]].
  28. P. Caputa and S. Liu, “Quantum complexity and topological phases of matter,” Phys. Rev. B 106 (2022) no.19, 195125 doi:10.1103/PhysRevB.106.195125 [arXiv:2205.05688 [hep-th]].
  29. W. Mück and Y. Yang, “Krylov complexity and orthogonal polynomials,” Nucl. Phys. B 984 (2022), 115948 doi:10.1016/j.nuclphysb.2022.115948 [arXiv:2205.12815 [hep-th]].
  30. A. Bhattacharya, P. Nandy, P. P. Nath and H. Sahu, “Operator growth and Krylov construction in dissipative open quantum systems,” JHEP 12, 081 (2022) doi:10.1007/JHEP12(2022)081 [arXiv:2207.05347 [quant-ph]].
  31. B. Bhattacharjee, S. Sur and P. Nandy, “Probing quantum scars and weak ergodicity breaking through quantum complexity,” Phys. Rev. B 106, no.20, 205150 (2022) doi:10.1103/PhysRevB.106.205150 [arXiv:2208.05503 [quant-ph]].
  32. M. Afrasiar, J. Kumar Basak, B. Dey, K. Pal and K. Pal, “Time evolution of spread complexity in quenched Lipkin-Meshkov-Glick model,” [arXiv:2208.10520 [hep-th]].
  33. M. Alishahiha, “On quantum complexity,” Phys. Lett. B 842 (2023), 137979 doi:10.1016/j.physletb.2023.137979 [arXiv:2209.14689 [hep-th]].
  34. S. He, P. H. C. Lau, Z. Y. Xian and L. Zhao, “Quantum chaos, scrambling and operator growth in T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformed SYK models,” JHEP 12 (2022), 070 doi:10.1007/JHEP12(2022)070 [arXiv:2209.14936 [hep-th]].
  35. B. Bhattacharjee, P. Nandy and T. Pathak, “Krylov complexity in large-q𝑞qitalic_q and double-scaled SYK model,” [arXiv:2210.02474 [hep-th]].
  36. B. Bhattacharjee, X. Cao, P. Nandy and T. Pathak, “Operator growth in open quantum systems: lessons from the dissipative SYK,” JHEP 03, 054 (2023) doi:10.1007/JHEP03(2023)054 [arXiv:2212.06180 [quant-ph]].
  37. M. Alishahiha and S. Banerjee, “A universal approach to Krylov State and Operator complexities,” [arXiv:2212.10583 [hep-th]].
  38. A. Bhattacharya, P. Nandy, P. P. Nath and H. Sahu, “On Krylov complexity in open systems: an approach via bi-Lanczos algorithm,” [arXiv:2303.04175 [quant-ph]].
  39. J. Erdmenger, S. K. Jian and Z. Y. Xian, “Universal chaotic dynamics from Krylov space,” [arXiv:2303.12151 [hep-th]].
  40. K. Pal, K. Pal, A. Gill and T. Sarkar, “Time evolution of spread complexity and statistics of work done in quantum quenches,” [arXiv:2304.09636 [quant-ph]].
  41. A. A. Nizami and A. W. Shrestha, “Krylov construction and complexity for driven quantum systems,” [arXiv:2305.00256 [quant-ph]].
  42. E. Rabinovici, A. Sánchez-Garrido, R. Shir and J. Sonner, “A bulk manifestation of Krylov complexity,” [arXiv:2305.04355 [hep-th]].
  43. S. Nandy, B. Mukherjee, A. Bhattacharyya and A. Banerjee, “Quantum state complexity meets many-body scars,” [arXiv:2305.13322 [quant-ph]].
  44. D. Patramanis and W. Sybesma, “Krylov complexity in a natural basis for the Schrödinger algebra,” [arXiv:2306.03133 [quant-ph]].
  45. A. Bhattacharyya, D. Ghosh and P. Nandi, “Operator growth and Krylov Complexity in Bose-Hubbard Model,” [arXiv:2306.05542 [hep-th]].
  46. H. A. Camargo, V. Jahnke, H. S. Jeong, K. Y. Kim and M. Nishida, “Spectral and Krylov Complexity in Billiard Systems,” [arXiv:2306.11632 [hep-th]].
  47. P. Caputa, J. M. Magan, D. Patramanis and E. Tonni, “Krylov complexity of modular Hamiltonian evolution,” [arXiv:2306.14732 [hep-th]].
  48. A. Avdoshkin, A. Dymarsky and M. Smolkin, “Krylov complexity in quantum field theory, and beyond,” [arXiv:2212.14429 [hep-th]].
  49. H. A. Camargo, V. Jahnke, K. Y. Kim and M. Nishida, “Krylov Complexity in Free and Interacting Scalar Field Theories with Bounded Power Spectrum,” [arXiv:2212.14702 [hep-th]].
  50. J. Hartong, E. Kiritsis and N. A. Obers, “Field Theory on Newton-Cartan Backgrounds and Symmetries of the Lifshitz Vacuum,” JHEP 08, 006 (2015) doi:10.1007/JHEP08(2015)006 [arXiv:1502.00228 [hep-th]].
  51. S. A. Hartnoll, A. Lucas and S. Sachdev, “Holographic quantum matter,” [arXiv:1612.07324 [hep-th]].
  52. J. Figueroa-O’Farrill, R. Grassie and S. Prohazka, “Lifshitz symmetry: Lie algebras, spacetimes and particles,” SciPost Phys. 14, 035 (2023) doi:10.21468/SciPostPhys.14.3.035 [arXiv:2206.11806 [hep-th]].
  53. J. Alexandre, “Lifshitz-type Quantum Field Theories in Particle Physics,” Int. J. Mod. Phys. A 26, 4523-4541 (2011) doi:10.1142/S0217751X11054656 [arXiv:1109.5629 [hep-ph]].
  54. M. Laine and A. Vuorinen, “Basics of Thermal Field Theory,” Lect. Notes Phys. 925, pp.1-281 (2016) Springer, 2016, doi:10.1007/978-3-319-31933-9 [arXiv:1701.01554 [hep-ph]].
  55. M. R. Mohammadi Mozaffar and A. Mollabashi, “Entanglement in Lifshitz-type Quantum Field Theories,” JHEP 07, 120 (2017) doi:10.1007/JHEP07(2017)120 [arXiv:1705.00483 [hep-th]].
  56. T. He, J. M. Magan and S. Vandoren, “Entanglement Entropy in Lifshitz Theories,” SciPost Phys. 3, no.5, 034 (2017) doi:10.21468/SciPostPhys.3.5.034 [arXiv:1705.01147 [hep-th]].
  57. S. A. Gentle and S. Vandoren, “Lifshitz entanglement entropy from holographic cMERA,” JHEP 07, 013 (2018) doi:10.1007/JHEP07(2018)013 [arXiv:1711.11509 [hep-th]].
  58. M. R. Mohammadi Mozaffar and A. Mollabashi, “Logarithmic Negativity in Lifshitz Harmonic Models,” J. Stat. Mech. 1805, no.5, 053113 (2018) doi:10.1088/1742-5468/aac135 [arXiv:1712.03731 [hep-th]].
  59. M. R. Mohammadi Mozaffar and A. Mollabashi, “Entanglement Evolution in Lifshitz-type Scalar Theories,” JHEP 01, 137 (2019) doi:10.1007/JHEP01(2019)137 [arXiv:1811.11470 [hep-th]].
  60. M. R. Mohammadi Mozaffar and A. Mollabashi, “Universal Scaling in Fast Quenches Near Lifshitz-Like Fixed Points,” Phys. Lett. B 797, 134906 (2019) doi:10.1016/j.physletb.2019.134906 [arXiv:1906.07017 [hep-th]].
  61. D. Hartmann, K. Kavanagh and S. Vandoren, “Entanglement entropy with Lifshitz fermions,” SciPost Phys. 11, no.2, 031 (2021) doi:10.21468/SciPostPhys.11.2.031 [arXiv:2104.10913 [quant-ph]].
  62. M. R. M. Mozaffar and A. Mollabashi, “Time scaling of entanglement in integrable scale-invariant theories,” Phys. Rev. Res. 4, no.2, L022010 (2022) doi:10.1103/PhysRevResearch.4.L022010 [arXiv:2106.14700 [hep-th]].
  63. M. Mintchev, D. Pontello, A. Sartori and E. Tonni, “Entanglement entropies of an interval in the free Schrödinger field theory at finite density,” JHEP 07, 120 (2022) doi:10.1007/JHEP07(2022)120 [arXiv:2201.04522 [hep-th]].
  64. M. Mintchev, D. Pontello and E. Tonni, “Entanglement entropies of an interval in the free Schrödinger field theory on the half line,” JHEP 09, 090 (2022) doi:10.1007/JHEP09(2022)090 [arXiv:2206.06187 [hep-th]].
  65. M. Alishahiha, A. Faraji Astaneh and M. R. Mohammadi Mozaffar, “Thermalization in backgrounds with hyperscaling violating factor,” Phys. Rev. D 90, no.4, 046004 (2014) doi:10.1103/PhysRevD.90.046004 [arXiv:1401.2807 [hep-th]].
  66. D. A. Roberts and B. Swingle, “Lieb-Robinson Bound and the Butterfly Effect in Quantum Field Theories,” Phys. Rev. Lett. 117, no.9, 091602 (2016) doi:10.1103/PhysRevLett.117.091602 [arXiv:1603.09298 [hep-th]].
  67. M. Alishahiha, A. Faraji Astaneh, M. R. Mohammadi Mozaffar and A. Mollabashi, “Complexity Growth with Lifshitz Scaling and Hyperscaling Violation,” JHEP 07, 042 (2018) doi:10.1007/JHEP07(2018)042 [arXiv:1802.06740 [hep-th]].
  68. P. Caputa and S. Datta, “Operator growth in 2d CFT,” JHEP 12, 188 (2021) [erratum: JHEP 09, 113 (2022)] doi:10.1007/JHEP12(2021)188 [arXiv:2110.10519 [hep-th]].
  69. P. Caputa, J. M. Magan and D. Patramanis, “Geometry of Krylov complexity,” Phys. Rev. Res. 4 (2022) no.1, 013041 doi:10.1103/PhysRevResearch.4.013041 [arXiv:2109.03824 [hep-th]].
  70. D. J. Yates, A. G. Abanov and A. Mitra, “Lifetime of Almost Strong Edge-Mode Operators in One-Dimensional, Interacting, Symmetry Protected Topological Phases,” Phys. Rev. Lett. 124, no.20, 206803 (2020) doi:10.1103/PhysRevLett.124.206803 [arXiv:2002.00098 [cond-mat.str-el]].
  71. N. Shiba and T. Takayanagi, “Volume Law for the Entanglement Entropy in Non-local QFTs,” JHEP 02, 033 (2014) doi:10.1007/JHEP02(2014)033 [arXiv:1311.1643 [hep-th]].
  72. https://turin.ipm.ir/.
Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube