Variational Quantum Simulation of Partial Differential Equations: Applications in Colloidal Transport (2307.07173v1)
Abstract: We assess the use of variational quantum imaginary time evolution for solving partial differential equations. Our results demonstrate that real-amplitude ansaetze with full circular entangling layers lead to higher-fidelity solutions compared to those with partial or linear entangling layers. To efficiently encode impulse functions, we propose a graphical mapping technique for quantum states that often requires only a single bit-flip of a parametric gate. As a proof of concept, we simulate colloidal deposition on a planar wall by solving the Smoluchowski equation including the Derjaguin-Landau-Verwey-Overbeek (DLVO) potential energy. We find that over-parameterization is necessary to satisfy certain boundary conditions and that higher-order time-stepping can effectively reduce norm errors. Together, our work highlights the potential of variational quantum simulation for solving partial differential equations using near-term quantum devices.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.