Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Tuning the Intrinsic Spin Hall Effect by Charge Density Wave Order in Topological Kagome Metals (2307.06230v2)

Published 12 Jul 2023 in cond-mat.mtrl-sci and cond-mat.mes-hall

Abstract: Kagome metals are topological materials with a rich phase diagram featuring various charge density wave orders and even unconventional superconductivity. However, little is still known about possible spin-polarized responses in these non-magnetic compounds. Here, we perform ab-initio calculations of the intrinsic spin Hall effect (SHE) in the kagome metals AV$_3$Sb$_5$ (A=Cs, Rb, K), CsTi$_3$Bi$_5$ and ScV$_6$Sn$_6$. We report large spin Hall conductivities, comparable with the Weyl semimetal TaAs. Additionally, in CsV$_3$Sb$_5$ the SHE is strongly renormalized by the CDW order. We can understand these results based on the topological properties of band structures, demonstrating that the SHE is dominated by the position and shape of the Dirac nodal lines in the kagome sublattice. Our results suggest kagome materials as a promising, tunable platform for future spintronics applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. S. Yan, D. A. Huse, and S. R. White, Spin-Liquid Ground State of the S = 1/2 Kagome Heisenberg Antiferromagnet, Science 332, 1173 (2011), arXiv:1011.6114 [cond-mat.str-el] .
  2. W.-H. Ko, P. A. Lee, and X.-G. Wen, Doped kagome system as exotic superconductor, Phys. Rev. B 79, 214502 (2009), arXiv:0804.1359 [cond-mat.str-el] .
  3. S. Nakatsuji, N. Kiyohara, and T. Higo, Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature, Nature (London) 527, 212 (2015).
  4. H. Tan and B. Yan, Abundant Lattice Instability in Kagome Metal ScV66{}_{6}start_FLOATSUBSCRIPT 6 end_FLOATSUBSCRIPT Sn66{}_{6}start_FLOATSUBSCRIPT 6 end_FLOATSUBSCRIPT, Phys. Rev. Lett.  130, 266402 (2023), arXiv:2302.07922 [cond-mat.mtrl-sci] .
  5. D. Pesin and A. H. MacDonald, Spintronics and pseudospintronics in graphene and topological insulators, Nat. Mater. 11, 409 (2012), arXiv:1308.3428 [cond-mat.mes-hall] .
  6. Y. Fan and K. L. Wang, Spintronics Based on Topological Insulators, Spin 6, 1640001-226 (2016).
  7. K. Koepernik and H. Eschrig, Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme, Phys. Rev. B 59, 1743 (1999).
  8. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett.  77, 3865 (1996).
  9. N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B 56, 12847 (1997), arXiv:cond-mat/9707145 [cond-mat.mtrl-sci] .
  10. W. H. Kleiner, Space-Time Symmetry Restrictions on Transport Coefficients. II. Two Theories Compared, Physical Review 153, 726 (1967).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com