Merging multiple input descriptors and supervisors in a deep neural network for tractogram filtering (2307.05786v1)
Abstract: One of the main issues of the current tractography methods is their high false-positive rate. Tractogram filtering is an option to remove false-positive streamlines from tractography data in a post-processing step. In this paper, we train a deep neural network for filtering tractography data in which every streamline of a tractogram is classified as {\em plausible, implausible}, or {\em inconclusive}. For this, we use four different tractogram filtering strategies as supervisors: TractQuerier, RecobundlesX, TractSeg, and an anatomy-inspired filter. Their outputs are combined to obtain the classification labels for the streamlines. We assessed the importance of different types of information along the streamlines for performing this classification task, including the coordinates of the streamlines, diffusion data, landmarks, T1-weighted information, and a brain parcellation. We found that the streamline coordinates are the most relevant followed by the diffusion data in this particular classification task.
- Tractogram filtering of anatomically non-plausible fibers with geometric deep learning. In A. L. Martel, P. Abolmaesumi, D. Stoyanov, D. Mateus, M. A. Zuluaga, S. K. Zhou, D. Racoceanu, and L. Joskowicz, editors, Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, pages 291–301, Cham, 2020. Springer International Publishing. doi: 10.1007/978-3-030-59728-3_29.
- Cleaning up the mess: tractography outlier removal using hierarchical QuickBundles clustering. In Proc. ISMRM, page 2844, 2015.
- COMMIT: Convex optimization modeling for microstructure informed tractography. IEEE Transactions on Medical Imaging, 2015. doi: 10.1109/TMI.2014.2352414.
- Diffusion MRI tractography filtering techniques change the topology of structural connectomes. Journal of Neural Engineering, 17(6):065002, 11 2020. doi: 10.1088/1741-2552/abc29b.
- Recognition of white matter bundles using local and global streamline-based registration and clustering. NeuroImage, 2018. doi: 10.1016/j.neuroimage.2017.07.015.
- Towards quantitative connectivity analysis: Reducing tractography biases. NeuroImage, 98, 2014. doi: 10.1016/j.neuroimage.2014.04.074.
- Randomized iterative spherical-deconvolution informed tractogram filtering. NeuroImage, page 120248, 2023. ISSN 1053-8119. doi: https://doi.org/10.1016/j.neuroimage.2023.120248.
- Challenges for Tractogram Filtering. In Mathematics and Visualization, pages 149–168. Springer, 2021. doi: 10.1007/978-3-030-56215-1_7.
- Adam: A method for stochastic optimization. In 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. International Conference on Learning Representations, ICLR, 12 2015.
- Filtering in Tractography using Autoencoders (FINTA). Medical Image Analysis, page 102126, 6 2021. doi: 10.1016/j.media.2021.102126.
- The challenge of mapping the human connectome based on diffusion tractography. Nature Communications, 2017. doi: 10.1038/s41467-017-01285-x.
- Anchor-Constrained Plausibility (ACP): A Novel Concept for Assessing Tractography and Reducing False-Positives. In A. F. Frangi, J. A. Schnabel, C. Davatzikos, C. Alberola-López, and G. Fichtinger, editors, Medical Image Computing and Computer Assisted Intervention â MICCAI 2018, pages 20–27. Springer, Cham, 9 2018. doi: 10.1007/978-3-030-00931-1_3.
- TRAFIC: Fiber Tract Classification Using Deep Learning. Proceedings of SPIE–the International Society for Optical Engineering, 10574, 2 2018. doi: 10.1117/12.2293931.
- Hierarchical Microstructure Informed Tractography. Brain Connectivity, 11(2):75–88, 3 2021. doi: 10.1089/brain.2020.0907.
- PyTorch: An Imperative Style, High-Performance Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.
- Evaluation and statistical inference for human connectomes. Nature Methods, 2014. doi: 10.1038/nmeth.3098.
- Half of the streamlines built in a whole human brain tractogram is anatomically uninterpretable. In Proc. OHBM, page Th785. OHBM, 2019.
- F. Rheault. Atlas for RecobundlesX, 1 2020. URL https://zenodo.org/record/3613688.
- Tractostorm: The what, why, and how of tractography dissection reproducibility. Human Brain Mapping, 41(7):1859–1874, 5 2020a. doi: 10.1002/hbm.24917.
- Common misconceptions, hidden biases and modern challenges of dMRI tractography. Journal of Neural Engineering, 17(1):011001, 2 2020b. doi: 10.1088/1741-2552/ab6aad.
- Age-associated alterations in cortical gray and white matter signal intensity and gray to white matter contrast. NeuroImage, 48(1):21–28, 10 2009. doi: https://doi.org/10.1016/j.neuroimage.2009.06.074.
- A new method for accurate in vivo mapping of human brain connections using microstructural and anatomical information. Science Advances, 6(31):eaba8245, 7 2020. doi: 10.1126/sciadv.aba8245.
- Limits to anatomical accuracy of diffusion tractography using modern approaches. NeuroImage, 185:1–11, 1 2019. doi: 10.1016/j.neuroimage.2018.10.029.
- Tractography dissection variability: What happens when 42 groups dissect 14 white matter bundles on the same dataset? NeuroImage, 243:118502, 2021. doi: 10.1016/j.neuroimage.2021.118502.
- Anatomically-constrained tractography: Improved diffusion MRI streamlines tractography through effective use of anatomical information. NeuroImage, 62(3):1924–1938, 9 2012. doi: 10.1016/j.neuroimage.2012.06.005.
- SIFT: Spherical-deconvolution informed filtering of tractograms. NeuroImage, 67:298–312, 2 2013. doi: 10.1016/j.neuroimage.2012.11.049.
- SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. NeuroImage, 119:338–351, 10 2015. doi: 10.1016/j.neuroimage.2015.06.092.
- Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions. In Proc. ISMRM, page 1670, 2010.
- The WU-Minn Human Connectome Project: An overview. NeuroImage, 2013. doi: 10.1016/j.neuroimage.2013.05.041.
- X. Wan. Assessing the streamline plausibility through convex optimization for microstructure informed tractography (COMMIT) with deep learning. Master’s thesis, KTH Royal Institute of Technology, 2023. URL http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1754277.
- The white matter query language: a novel approach for describing human white matter anatomy. Brain Structure and Function, 221(9):4705–4721, 12 2016. doi: 10.1007/s00429-015-1179-4.
- TractSeg - Fast and accurate white matter tract segmentation. NeuroImage, 183:239–253, 12 2018. doi: 10.1016/j.neuroimage.2018.07.070.
- An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan. NeuroImage, 179:429–447, 2018a. doi: 10.1016/j.neuroimage.2018.06.027.
- Deep White Matter Analysis: Fast, Consistent Tractography Segmentation Across Populations and dMRI Acquisitions. In D. Shen, T. Liu, T. M. Peters, L. H. Staib, C. Essert, S. Zhou, P.-T. Yap, and A. Khan, editors, Medical Image Computing and Computer Assisted Intervention â MICCAI 2019, pages 599–608. Springer, Cham, 10 2019. doi: 10.1007/978-3-030-32248-9_67.
- Mapping population-based structural connectomes. NeuroImage, 172, 2018b. doi: 10.1016/j.neuroimage.2017.12.064.