Bundle-specific Tractogram Distribution Estimation Using Higher-order Streamline Differential Equation (2307.02825v2)
Abstract: Tractography traces the peak directions extracted from fiber orientation distribution (FOD) suffering from ambiguous spatial correspondences between diffusion directions and fiber geometry, which is prone to producing erroneous tracks while missing true positive connections. The peaks-based tractography methods 'locally' reconstructed streamlines in 'single to single' manner, thus lacking of global information about the trend of the whole fiber bundle. In this work, we propose a novel tractography method based on a bundle-specific tractogram distribution function by using a higher-order streamline differential equation, which reconstructs the streamline bundles in 'cluster to cluster' manner. A unified framework for any higher-order streamline differential equation is presented to describe the fiber bundles with disjoint streamlines defined based on the diffusion tensor vector field. At the global level, the tractography process is simplified as the estimation of bundle-specific tractogram distribution (BTD) coefficients by minimizing the energy optimization model, and is used to characterize the relations between BTD and diffusion tensor vector under the prior guidance by introducing the tractogram bundle information to provide anatomic priors. Experiments are performed on simulated Hough, Sine, Circle data, ISMRM 2015 Tractography Challenge data, FiberCup data, and in vivo data from the Human Connectome Project (HCP) data for qualitative and quantitative evaluation. The results demonstrate that our approach can reconstruct the complex global fiber bundles directly. BTD reduces the error deviation and accumulation at the local level and shows better results in reconstructing long-range, twisting, and large fanning tracts.
- K. H. Maier-Hein, P. F. Neher, J.-C. Houde, M.-A. Côté, E. Garyfallidis, J. Zhong, M. Chamberland, F.-C. Yeh, Y.-C. Lin, Q. Ji et al., “The challenge of mapping the human connectome based on diffusion tractography,” Nature Communications, vol. 8, no. 1, p. 1349, 2017.
- S. Mori and P. C. Van Zijl, “Fiber tracking: principles and strategies–a technical review,” NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo, vol. 15, no. 7-8, pp. 468–480, 2002.
- S. Jbabdi and H. Johansen-Berg, “Tractography: where do we go from here?” Brain Connectivity, vol. 1, no. 3, pp. 169–183, 2011.
- L. Xie, J. Huang, J. Yu, Q. Zeng, Q. Hu, Z. Chen, G. Xie, and Y. Feng, “Cntseg: A multimodal deep-learning-based network for cranial nerves tract segmentation,” Medical Image Analysis, vol. 86, p. 102766, 2023.
- M. Descoteaux, R. Deriche, T. R. Knosche, and A. Anwander, “Deterministic and probabilistic tractography based on complex fibre orientation distributions,” IEEE Transactions on Medical Imaging, vol. 28, no. 2, pp. 269–286, 2008.
- S. Jbabdi, S. N. Sotiropoulos, S. N. Haber, D. C. Van Essen, and T. E. Behrens, “Measuring macroscopic brain connections in vivo,” Nature Neuroscience, vol. 18, no. 11, pp. 1546–1555, 2015.
- B. Jeurissen, A. Leemans, D. K. Jones, J.-D. Tournier, and J. Sijbers, “Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution,” Human Brain Mapping, vol. 32, no. 3, pp. 461–479, 2011.
- P. Poulin, D. Jörgens, P.-M. Jodoin, and M. Descoteaux, “Tractography and machine learning: Current state and open challenges,” Magnetic Resonance Imaging, vol. 64, pp. 37–48, 2019.
- F. Rheault, P. Poulin, A. V. Caron, E. St-Onge, and M. Descoteaux, “Common misconceptions, hidden biases and modern challenges of dmri tractography,” Journal of Neural Engineering, vol. 17, no. 1, p. 011001, 2020.
- C.-H. Yeh, D. K. Jones, X. Liang, M. Descoteaux, and A. Connelly, “Mapping structural connectivity using diffusion mri: challenges and opportunities,” Journal of Magnetic Resonance Imaging, vol. 53, no. 6, pp. 1666–1682, 2021.
- J.-D. Tournier, F. Calamante, and A. Connelly, “Mrtrix: diffusion tractography in crossing fiber regions,” International Journal of Imaging Systems and Technology, vol. 22, no. 1, pp. 53–66, 2012.
- M. Ankele, L.-H. Lim, S. Groeschel, and T. Schultz, “Versatile, robust, and efficient tractography with constrained higher-order tensor fodfs,” International Journal of Computer Assisted Radiology and Surgery, vol. 12, pp. 1257–1270, 2017.
- S. Cetin, E. Ozarslan, and G. Unal, “Elucidating intravoxel geometry in diffusion-mri: asymmetric orientation distribution functions (aodfs) revealed by a cone model,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part I 18. Springer, 2015, pp. 231–238.
- S. N. Sotiropoulos, T. E. Behrens, and S. Jbabdi, “Ball and rackets: inferring fiber fanning from diffusion-weighted mri,” NeuroImage, vol. 60, no. 2, pp. 1412–1425, 2012.
- M. Reisert, E. Kellner, and V. G. Kiselev, “About the geometry of asymmetric fiber orientation distributions,” IEEE Transactions on Medical Imaging, vol. 31, no. 6, pp. 1240–1249, 2012.
- M. Bastiani, M. Cottaar, K. Dikranian, A. Ghosh, H. Zhang, D. C. Alexander, T. E. Behrens, S. Jbabdi, and S. N. Sotiropoulos, “Improved tractography using asymmetric fibre orientation distributions,” NeuroImage, vol. 158, pp. 205–218, 2017.
- Y. Wu, Y. Hong, Y. Feng, D. Shen, and P.-T. Yap, “Mitigating gyral bias in cortical tractography via asymmetric fiber orientation distributions,” Medical Image Analysis, vol. 59, p. 101543, 2020.
- H.-H. Ehricke, K.-M. Otto, and U. Klose, “Regularization of bending and crossing white matter fibers in mri q-ball fields,” Magnetic Resonance Imaging, vol. 29, no. 7, pp. 916–926, 2011.
- T. E. Behrens, H. J. Berg, S. Jbabdi, M. F. Rushworth, and M. W. Woolrich, “Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?” NeuroImage, vol. 34, no. 1, pp. 144–155, 2007.
- C. Ye and J. L. Prince, “Probabilistic tractography using lasso bootstrap,” Medical Image Analysis, vol. 35, pp. 544–553, 2017.
- J. Pontabry, F. Rousseau, E. Oubel, C. Studholme, M. Koob, and J.-L. Dietemann, “Probabilistic tractography using q-ball imaging and particle filtering: application to adult and in-utero fetal brain studies,” Medical Image Analysis, vol. 17, no. 3, pp. 297–310, 2013.
- S. Khalsa, S. D. Mayhew, M. Chechlacz, M. Bagary, and A. P. Bagshaw, “The structural and functional connectivity of the posterior cingulate cortex: Comparison between deterministic and probabilistic tractography for the investigation of structure–function relationships,” NeuroImage, vol. 102, pp. 118–127, 2014.
- V. Wegmayr and J. M. Buhmann, “Entrack: Probabilistic spherical regression with entropy regularization for fiber tractography,” International Journal of Computer Vision, vol. 129, pp. 656–680, 2021.
- J. G. Malcolm, M. E. Shenton, and Y. Rathi, “Filtered multitensor tractography,” IEEE Transactions on Medical Imaging, vol. 29, no. 9, pp. 1664–1675, 2010.
- R. Liao, L. Ning, Z. Chen, L. Rigolo, S. Gong, O. Pasternak, A. J. Golby, Y. Rathi, and L. J. O’Donnell, “Performance of unscented kalman filter tractography in edema: Analysis of the two-tensor model,” NeuroImage: Clinical, vol. 15, pp. 819–831, 2017.
- S. Jbabdi, M. W. Woolrich, J. L. Andersson, and T. Behrens, “A bayesian framework for global tractography,” NeuroImage, vol. 37, no. 1, pp. 116–129, 2007.
- A. Lemkaddem, D. Skiöldebrand, A. Dal Palú, J.-P. Thiran, and A. Daducci, “Global tractography with embedded anatomical priors for quantitative connectivity analysis,” Frontiers in Neurology, vol. 5, p. 232, 2014.
- I. Aganj, C. Lenglet, N. Jahanshad, E. Yacoub, N. Harel, P. M. Thompson, and G. Sapiro, “A hough transform global probabilistic approach to multiple-subject diffusion mri tractography,” Medical Image Analysis, vol. 15, no. 4, pp. 414–425, 2011.
- P. Fillard, C. Poupon, and J.-F. Mangin, “A novel global tractography algorithm based on an adaptive spin glass model.” in MICCAI (1), 2009, pp. 927–934.
- J.-F. Mangin, P. Fillard, Y. Cointepas, D. Le Bihan, V. Frouin, and C. Poupon, “Toward global tractography,” NeuroImage, vol. 80, pp. 290–296, 2013.
- I. Nelkenbaum, G. Tsarfaty, N. Kiryati, E. Konen, and A. Mayer, “Automatic segmentation of white matter tracts using multiple brain mri sequences,” in 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). IEEE, 2020, pp. 368–371.
- M. Cottaar, M. Bastiani, N. Boddu, M. F. Glasser, S. Haber, D. C. Van Essen, S. N. Sotiropoulos, and S. Jbabdi, “Modelling white matter in gyral blades as a continuous vector field,” NeuroImage, vol. 227, p. 117693, 2021.
- D. B. Aydogan and Y. Shi, “Parallel transport tractography,” IEEE Transactions on Medical Imaging, vol. 40, no. 2, pp. 635–647, 2020.
- Y. Feng and J. He, “Asymmetric fiber trajectory distribution estimation using streamline differential equation,” Medical Image Analysis, vol. 63, p. 101686, 2020.
- R. E. Smith, J.-D. Tournier, F. Calamante, and A. Connelly, “Anatomically-constrained tractography: improved diffusion mri streamlines tractography through effective use of anatomical information,” NeuroImage, vol. 62, no. 3, pp. 1924–1938, 2012.
- F. Rheault, E. St-Onge, J. Sidhu, K. Maier-Hein, N. Tzourio-Mazoyer, L. Petit, and M. Descoteaux, “Bundle-specific tractography with incorporated anatomical and orientational priors,” NeuroImage, vol. 186, pp. 382–398, 2019.
- M. F. Glasser, S. M. Smith, D. S. Marcus, J. L. Andersson, E. J. Auerbach, T. E. Behrens, T. S. Coalson, M. P. Harms, M. Jenkinson, S. Moeller et al., “The human connectome project’s neuroimaging approach,” Nature Neuroscience, vol. 19, no. 9, pp. 1175–1187, 2016.
- D. C. Van Essen, S. M. Smith, D. M. Barch, T. E. Behrens, E. Yacoub, K. Ugurbil, W.-M. H. Consortium et al., “The wu-minn human connectome project: an overview,” NeuroImage, vol. 80, pp. 62–79, 2013.
- B. Hu, B. Ye, Y. Yang, K. Zhu, Z. Kang, S. Kuang, L. Luo, and H. Shan, “Quantitative diffusion tensor deterministic and probabilistic fiber tractography in relapsing–remitting multiple sclerosis,” European Journal of Radiology, vol. 79, no. 1, pp. 101–107, 2011.
- P. J. Basser, “Fiber-tractography via diffusion tensor mri (dt-mri),” in Proceedings of the 6th Annual Meeting ISMRM, Sydney, Australia, vol. 1226, 1998.
- X. Pennec, P. Fillard, and N. Ayache, “A riemannian framework for tensor computing,” International Journal of computer vision, vol. 66, pp. 41–66, 2006.
- P.-T. Yap, H. An, Y. Chen, and D. Shen, “Uncertainty estimation in diffusion mri using the nonlocal bootstrap,” IEEE Transactions on Medical Imaging, vol. 33, no. 8, pp. 1627–1640, 2014.
- L. Florack, E. Balmashnova, L. Astola, and E. Brunenberg, “A new tensorial framework for single-shell high angular resolution diffusion imaging,” Journal of Mathematical Imaging and Vision, vol. 38, pp. 171–181, 2010.
- C. Lenglet, E. Prados, J.-P. Pons, R. Deriche, and O. Faugeras, “Brain connectivity mapping using riemannian geometry, control theory, and pdes,” SIAM Journal on Imaging Sciences, vol. 2, no. 2, pp. 285–322, 2009.
- F. Zhang and E. R. Hancock, “New riemannian techniques for directional and tensorial image data,” Pattern Recognition, vol. 43, no. 4, pp. 1590–1606, 2010.
- N. Kasenburg, M. Liptrot, N. L. Reislev, S. N. Ørting, M. Nielsen, E. Garde, and A. Feragen, “Training shortest-path tractography: Automatic learning of spatial priors,” NeuroImage, vol. 130, pp. 63–76, 2016.
- R. Bammer, B. Acar, and M. E. Moseley, “In vivo mr tractography using diffusion imaging,” European Journal of Radiology, vol. 45, no. 3, pp. 223–234, 2003.
- A. Daducci, A. Marigonda, G. Orlandi, and R. Posenato, “Neuronal fiber–tracking via optimal mass transportation,” Communications on Pure and Applied Analysis, vol. 11, no. 5, p. 2157, 2012.
- J. D. Tournier, F. Calamante, A. Connelly et al., “Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions,” in Proceedings of the International Society for Magnetic Resonance in Medicine, vol. 1670. Ismrm, 2010.
- Z. Chen, Y. Tie, O. Olubiyi, L. Rigolo, A. Mehrtash, I. Norton, O. Pasternak, Y. Rathi, A. J. Golby, and L. J. O’Donnell, “Reconstruction of the arcuate fasciculus for surgical planning in the setting of peritumoral edema using two-tensor unscented kalman filter tractography,” NeuroImage: Clinical, vol. 7, pp. 815–822, 2015.
- F. Pestilli, J. D. Yeatman, A. Rokem, K. N. Kay, and B. A. Wandell, “Evaluation and statistical inference for human connectomes,” Nature Methods, vol. 11, no. 10, pp. 1058–1063, 2014.
- P. F. Neher, M. Descoteaux, J.-C. Houde, B. Stieltjes, and K. H. Maier-Hein, “Strengths and weaknesses of state of the art fiber tractography pipelines–a comprehensive in-vivo and phantom evaluation study using tractometer,” Medical Image Analysis, vol. 26, no. 1, pp. 287–305, 2015.
- Q. Welniarz, I. Dusart, and E. Roze, “The corticospinal tract: Evolution, development, and human disorders,” Developmental Neurobiology, vol. 77, no. 7, pp. 810–829, 2017.
- L. Fan, H. Li, J. Zhuo, Y. Zhang, J. Wang, L. Chen, Z. Yang, C. Chu, S. Xie, A. R. Laird et al., “The human brainnetome atlas: a new brain atlas based on connectional architecture,” Cerebral Cortex, vol. 26, no. 8, pp. 3508–3526, 2016.
- J. Wasserthal, P. F. Neher, D. Hirjak, and K. H. Maier-Hein, “Combined tract segmentation and orientation mapping for bundle-specific tractography,” Medical Image Analysis, vol. 58, p. 101559, 2019.
- J. H. Hong, S. H. Kim, S. H. Ahn, and S. H. Jang, “The anatomical location of the arcuate fasciculus in the human brain: a diffusion tensor tractography study,” Brain Research Bulletin, vol. 80, no. 1-2, pp. 52–55, 2009.
- L. B. Hinkley, E. J. Marco, A. M. Findlay, S. Honma, R. J. Jeremy, Z. Strominger, P. Bukshpun, M. Wakahiro, W. S. Brown, L. K. Paul et al., “The role of corpus callosum development in functional connectivity and cognitive processing,” 2012.