Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 452 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Signatures of Ultralight Bosons in Compact Binary Inspiral and Outspiral (2307.05181v2)

Published 11 Jul 2023 in gr-qc, astro-ph.CO, and hep-ph

Abstract: Ultralight bosons are well-motivated particles from various physical and cosmological theories, and can be spontaneously produced during the superradiant process, forming a dense hydrogen-like cloud around the spinning black hole. After the growth saturates, the cloud slowly depletes its mass through gravitational-wave emission. In this work we study the orbit dynamics of a binary system containing such a gravitational atom saturated in various spin-0,1,2 superradiant states, taking into account both the effects of dynamical friction and the cloud mass depletion. We estimate the significance of mass depletion, finding that although dynamical friction could dominate the inspiral phase, it typically does not affect the outspiral phase driven by the mass depletion. Focusing on the large orbit radius, we investigate the condition to observe the outspiral, and the detectability of the cloud via pulsar-timing signal in the case of black hole-pulsar binary.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. R. D. Peccei and H. R. Quinn, CPCP\mathrm{CP}roman_CP conservation in the presence of pseudoparticles, Phys. Rev. Lett. 38, 1440 (1977).
  2. F. Wilczek, Problem of strong p𝑝pitalic_p and t𝑡titalic_t invariance in the presence of instantons, Phys. Rev. Lett. 40, 279 (1978).
  3. S. Weinberg, A new light boson?, Phys. Rev. Lett. 40, 223 (1978).
  4. J. Preskill, M. B. Wise, and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120, 127 (1983).
  5. L. F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120, 133 (1983).
  6. M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120, 137 (1983).
  7. P. Svrcek and E. Witten, Axions In String Theory, JHEP 06, 051, arXiv:hep-th/0605206 .
  8. P. W. Graham, J. Mardon, and S. Rajendran, Vector Dark Matter from Inflationary Fluctuations, Phys. Rev. D 93, 103520 (2016), arXiv:1504.02102 [hep-ph] .
  9. Y. Ema, K. Nakayama, and Y. Tang, Production of purely gravitational dark matter: the case of fermion and vector boson, JHEP 07, 060, arXiv:1903.10973 [hep-ph] .
  10. A. Ahmed, B. Grzadkowski, and A. Socha, Gravitational production of vector dark matter, JHEP 08, 059, arXiv:2005.01766 [hep-ph] .
  11. L. Hui, Wave Dark Matter, Ann. Rev. Astron. Astrophys. 59, 247 (2021), arXiv:2101.11735 [astro-ph.CO] .
  12. E. Ferreira, Ultra-light dark matter, The Astronomy and Astrophysics Review 29 (2021).
  13. D. F. J. Kimball and K. van Bibber, eds., The Search for Ultralight Bosonic Dark Matter.
  14. D. Antypas et al., New Horizons: Scalar and Vector Ultralight Dark Matter,  (2022), arXiv:2203.14915 [hep-ex] .
  15. Y. Tang and Y.-L. Wu, Weyl scaling invariant R2superscript𝑅2R^{2}italic_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT gravity for inflation and dark matter, Phys. Lett. B 809, 135716 (2020), arXiv:2006.02811 [hep-ph] .
  16. N. Kitajima and K. Nakayama, Viable vector coherent oscillation dark matter, JCAP 07, 014, arXiv:2303.04287 [hep-ph] .
  17. E. W. Kolb and A. J. Long, Completely dark photons from gravitational particle production during the inflationary era, JHEP 03, 283, arXiv:2009.03828 [astro-ph.CO] .
  18. T. Moroi and W. Yin, Light Dark Matter from Inflaton Decay, JHEP 03, 301, arXiv:2011.09475 [hep-ph] .
  19. S. Sun, X.-Y. Yang, and Y.-L. Zhang, Pulsar timing residual induced by wideband ultralight dark matter with spin 0,1,2, Phys. Rev. D 106, 066006 (2022), arXiv:2112.15593 [astro-ph.CO] .
  20. T. Sato, F. Takahashi, and M. Yamada, Gravitational production of dark photon dark matter with mass generated by the Higgs mechanism, JCAP 08 (08), 022, arXiv:2204.11896 [hep-ph] .
  21. R. Brito, V. Cardoso, and P. Pani, Superradiance: New Frontiers in Black Hole Physics, Lect. Notes Phys. 906, pp.1 (2015), arXiv:1501.06570 [gr-qc] .
  22. A. Arvanitaki and S. Dubovsky, Exploring the String Axiverse with Precision Black Hole Physics, Phys. Rev. D 83, 044026 (2011), arXiv:1004.3558 [hep-th] .
  23. C. Yuan, R. Brito, and V. Cardoso, Probing ultralight dark matter with future ground-based gravitational-wave detectors, Phys. Rev. D 104, 044011 (2021), arXiv:2106.00021 [gr-qc] .
  24. N. Siemonsen, T. May, and W. E. East, Modeling the black hole superradiance gravitational waveform, Phys. Rev. D 107, 104003 (2023a), arXiv:2211.03845 [gr-qc] .
  25. D. Baumann, H. S. Chia, and R. A. Porto, Probing Ultralight Bosons with Binary Black Holes, Phys. Rev. D 99, 044001 (2019a), arXiv:1804.03208 [gr-qc] .
  26. H. S. Chia, Probing particle physics with gravitational waves (2020).
  27. J. Zhang and H. Yang, Dynamic signatures of black hole binaries with superradiant clouds, Phys. Rev. D 101, 043020 (2020).
  28. T. Takahashi, H. Omiya, and T. Tanaka, Axion cloud evaporation during inspiral of black hole binaries: The effects of backreaction and radiation, PTEP 2022, 043E01 (2022), arXiv:2112.05774 [gr-qc] .
  29. G. M. Tomaselli, T. F. M. Spieksma, and G. Bertone, Dynamical Friction in Gravitational Atoms,   (2023), arXiv:2305.15460 [gr-qc] .
  30. X. Tong, Y. Wang, and H.-Y. Zhu, Termination of superradiance from a binary companion, Phys. Rev. D 106, 043002 (2022a), arXiv:2205.10527 [gr-qc] .
  31. B. Su, Z.-Z. Xianyu, and X. Zhang, Probing Ultralight Bosons with Compact Eccentric Binaries, Astrophys. J. 923, 114 (2021a), arXiv:2107.13527 [gr-qc] .
  32. M. C. Ferreira, C. F. B. Macedo, and V. Cardoso, Orbital fingerprints of ultralight scalar fields around black holes, Phys. Rev. D 96, 083017 (2017), arXiv:1710.00830 [gr-qc] .
  33. T. Takahashi, H. Omiya, and T. Tanaka, Evolution of binary systems accompanying axion clouds in extreme mass ratio inspirals, Phys. Rev. D 107, 103020 (2023), arXiv:2301.13213 [gr-qc] .
  34. N. Xie and F. P. Huang, Imprints of ultralight axions on the gravitational wave signals of neutron star-black hole binary,   (2022), arXiv:2207.11145 [hep-ph] .
  35. S. D. B. Fell, L. Heisenberg, and D. Veske, Detecting Fundamental Vector Fields with LISA,   (2023), arXiv:2304.14129 [gr-qc] .
  36. A. Akil and Q. Ding, A Dark Matter Probe in Accreting Pulsar-Black Hole Binaries,   (2023), arXiv:2304.08824 [astro-ph.HE] .
  37. R. Brito, S. Grillo, and P. Pani, Black hole superradiant instability from ultralight spin-2 fields, Phys. Rev. Lett. 124, 211101 (2020).
  38. G. Ficarra, P. Pani, and H. Witek, Impact of multiple modes on the black-hole superradiant instability, Phys. Rev. D 99, 104019 (2019), arXiv:1812.02758 [gr-qc] .
  39. N. Siemonsen, T. May, and W. E. East, Superrad: A black hole superradiance gravitational waveform model 10.48550/ARXIV.2211.03845 (2022).
  40. R. Vicente and V. Cardoso, Dynamical friction of black holes in ultralight dark matter, Phys. Rev. D 105, 083008 (2022), arXiv:2201.08854 [gr-qc] .
  41. L. Annulli, V. Cardoso, and R. Vicente, Stirred and shaken: Dynamical behavior of boson stars and dark matter cores, Phys. Lett. B 811, 135944 (2020a), arXiv:2007.03700 [astro-ph.HE] .
  42. L. Annulli, V. Cardoso, and R. Vicente, Response of ultralight dark matter to supermassive black holes and binaries, Phys. Rev. D 102, 063022 (2020b), arXiv:2009.00012 [gr-qc] .
  43. R. Buehler and V. Desjacques, Dynamical Friction in fuzzy dark matter: circular orbits,   (2022), arXiv:2207.13740 [astro-ph.CO] .
  44. C. L. Benone and L. C. B. Crispino, Massive and charged scalar field in Kerr-Newman spacetime: Absorption and superradiance, Phys. Rev. D 99, 044009 (2019), arXiv:1901.05592 [gr-qc] .
  45. T. Takahashi and T. Tanaka, Axion clouds may survive the perturbative tidal interaction over the early inspiral phase of black hole binaries, JCAP 10, 031, arXiv:2106.08836 [gr-qc] .
  46. X. Tong, Y. Wang, and H.-Y. Zhu, Gravitational Collider Physics via Pulsar–Black Hole Binaries II: Fine and Hyperfine Structures Are Favored, Astrophys. J. 924, 99 (2022b), arXiv:2106.13484 [astro-ph.HE] .
  47. Q. Ding, X. Tong, and Y. Wang, Gravitational Collider Physics via Pulsar-Black Hole Binaries, Astrophys. J. 908, 78 (2021), arXiv:2009.11106 [astro-ph.HE] .
  48. X.-J. Yue and W.-B. Han, Gravitational waves with dark matter minispikes: the combined effect, Phys. Rev. D 97, 064003 (2018), arXiv:1711.09706 [gr-qc] .
  49. X.-J. Yue, W.-B. Han, and X. Chen, Dark matter: an efficient catalyst for intermediate-mass-ratio-inspiral events, Astrophys. J. 874, 34 (2019), arXiv:1802.03739 [gr-qc] .
  50. G.-L. Li, Y. Tang, and Y.-L. Wu, Probing dark matter spikes via gravitational waves of extreme-mass-ratio inspirals, Sci. China Phys. Mech. Astron. 65, 100412 (2022), arXiv:2112.14041 [astro-ph.CO] .
  51. B. Su, Z.-Z. Xianyu, and X. Zhang, Probing Ultralight Bosons with Compact Eccentric Binaries, Astrophys. J. 923, 114 (2021b), arXiv:2107.13527 [gr-qc] .
  52. M. Baryakhtar, R. Lasenby, and M. Teo, Black Hole Superradiance Signatures of Ultralight Vectors, Phys. Rev. D 96, 035019 (2017), arXiv:1704.05081 [hep-ph] .
  53. R. Brito and S. Shah, Extreme mass-ratio inspirals into black holes surrounded by scalar clouds, Phys. Rev. D 108, 084019 (2023).
  54. J. Danby, Fundamentals of celestial mechanics, Richmond: Willman-Bell  (1992).
  55. J. D. Hadjidemetriou, Two-body problem with variable mass: a new approach, Icarus 2, 440 (1963).
  56. F. Dosopoulou and V. Kalogera, Orbital evolution of mass-transferring eccentric binary systems. i. phase-dependent evolution, The Astrophysical Journal 825, 70 (2016a).
  57. F. Dosopoulou and V. Kalogera, Orbital evolution of mass-transferring eccentric binary systems. ii. secular evolution, The Astrophysical Journal 825, 71 (2016b).
Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube