Papers
Topics
Authors
Recent
Search
2000 character limit reached

Unknotted Curves on Seifert Surfaces

Published 10 Jul 2023 in math.GT | (2307.04313v1)

Abstract: We consider homologically essential simple closed curves on Seifert surfaces of genus one knots in $S3$, and in particular those that are unknotted or slice in $S3$. We completely characterize all such curves for most twist knots: they are either positive or negative braid closures; moreover, we determine exactly which of those are unknotted. A surprising consequence of our work is that the figure eight knot admits infinitely many unknotted essential curves up to isotopy on its genus one Seifert surface, and those curves are enumerated by Fibonacci numbers. On the other hand, we prove that many twist knots admit homologically essential curves that cannot be positive or negative braid closures. Indeed, among those curves, we exhibit an example of a slice but not unknotted homologically essential simple closed curve. We further investigate our study of unknotted essential curves for arbitrary Whitehead doubles of non-trivial knots, and obtain that there is a precisely one unknotted essential simple closed curve in the interior of the doubles' standard genus one Seifert surface. As a consequence of all these we obtain many new examples of 3-manifolds that bound contractible 4-manifolds.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.