Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distilled Pruning: Using Synthetic Data to Win the Lottery (2307.03364v3)

Published 7 Jul 2023 in cs.LG

Abstract: This work introduces a novel approach to pruning deep learning models by using distilled data. Unlike conventional strategies which primarily focus on architectural or algorithmic optimization, our method reconsiders the role of data in these scenarios. Distilled datasets capture essential patterns from larger datasets, and we demonstrate how to leverage this capability to enable a computationally efficient pruning process. Our approach can find sparse, trainable subnetworks (a.k.a. Lottery Tickets) up to 5x faster than Iterative Magnitude Pruning at comparable sparsity on CIFAR-10. The experimental results highlight the potential of using distilled data for resource-efficient neural network pruning, model compression, and neural architecture search.

Citations (1)

Summary

We haven't generated a summary for this paper yet.