Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Scalarizations for Sublinear Hypervolume Regret (2307.03288v4)

Published 6 Jul 2023 in cs.LG, cs.DS, and math.OC

Abstract: Scalarization is a general, parallizable technique that can be deployed in any multiobjective setting to reduce multiple objectives into one, yet some have dismissed this versatile approach because linear scalarizations cannot explore concave regions of the Pareto frontier. To that end, we aim to find simple non-linear scalarizations that provably explore a diverse set of $k$ objectives on the Pareto frontier, as measured by the dominated hypervolume. We show that hypervolume scalarizations with uniformly random weights achieves an optimal sublinear hypervolume regret bound of $O(T{-1/k})$, with matching lower bounds that preclude any algorithm from doing better asymptotically. For the setting of multiobjective stochastic linear bandits, we utilize properties of hypervolume scalarizations to derive a novel non-Euclidean analysis to get regret bounds of $\tilde{O}( d T{-1/2} + T{-1/k})$, removing unnecessary $\text{poly}(k)$ dependencies. We support our theory with strong empirical performance of using non-linear scalarizations that outperforms both their linear counterparts and other standard multiobjective algorithms in a variety of natural settings.

Citations (1)

Summary

We haven't generated a summary for this paper yet.