Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lower Bounds for the Average and Smoothed Number of Pareto Optima (1107.3876v1)

Published 20 Jul 2011 in cs.DS

Abstract: Smoothed analysis of multiobjective 0-1 linear optimization has drawn considerable attention recently. The number of Pareto-optimal solutions (i.e., solutions with the property that no other solution is at least as good in all the coordinates and better in at least one) for multiobjective optimization problems is the central object of study. In this paper, we prove several lower bounds for the expected number of Pareto optima. Our basic result is a lower bound of \Omega_d(nd-1) for optimization problems with d objectives and n variables under fairly general conditions on the distributions of the linear objectives. Our proof relates the problem of lower bounding the number of Pareto optima to results in geometry connected to arrangements of hyperplanes. We use our basic result to derive (1) To our knowledge, the first lower bound for natural multiobjective optimization problems. We illustrate this for the maximum spanning tree problem with randomly chosen edge weights. Our technique is sufficiently flexible to yield such lower bounds for other standard objective functions studied in this setting (such as, multiobjective shortest path, TSP tour, matching). (2) Smoothed lower bound of min {\Omega_d(nd-1.5 \phi{(d-log d) (1-\Theta(1/\phi))}), 2{\Theta(n)}}$ for the 0-1 knapsack problem with d profits for phi-semirandom distributions for a version of the knapsack problem. This improves the recent lower bound of Brunsch and Roeglin.

Citations (14)

Summary

We haven't generated a summary for this paper yet.