Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Kimi K2 164 tok/s Pro
2000 character limit reached

Probing the high temperature symmetry breaking with gravitational waves from domain walls (2307.03163v2)

Published 6 Jul 2023 in hep-ph and astro-ph.CO

Abstract: The symmetry can be broken at high temperature and then restored at low temperature, which is the so-called \emph{high temperature symmetry breaking}. It often appears in some theories such as the high scale electroweak baryogenesis mechanism. In this paper, we probe the high temperature $\mathbb{Z}_2$ symmetry breaking with gravitational waves (GWs) from domain wall annihilation. We first introduce a scalar with $\mathbb{Z}_2$ symmetry and few of singlet fermions that interact with scalar through a five-dimension operator. This can lead to the scalar potential has a non-zero minimum at high temperature. At the early stage, the scalar is pinned at symmetric phase due to the large Hubble fraction. When the scalar thermal mass becomes comparable to the Hubble parameter, it can quickly roll down to the minimum of potential. Then the $\mathbb{Z}_2$ symmetry is spontaneously broken and the domain walls will form. With the decrease of temperature, $\mathbb{Z}_2$ symmetry will be restored. We find that if domain walls are formed at $\mathcal{O}(10{9})~ \rm GeV$, the GW produced by domain wall annihilation is expected to be observed by BBO, CE and ET. In addition, we also discuss the relationships between this scenario and NANOGrav signal.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc] .
  2. N. Bartolo et al., JCAP 12, 026 (2016), arXiv:1610.06481 [astro-ph.CO] .
  3. C. Caprini and D. G. Figueroa, Class. Quant. Grav. 35, 163001 (2018), arXiv:1801.04268 [astro-ph.CO] .
  4. P. Auclair et al., JCAP 04, 034 (2020), arXiv:1909.00819 [astro-ph.CO] .
  5. C. Caprini et al., JCAP 04, 001 (2016), arXiv:1512.06239 [astro-ph.CO] .
  6. C. Caprini et al., JCAP 03, 024 (2020), arXiv:1910.13125 [astro-ph.CO] .
  7. G. Agazie et al. (NANOGrav), Astrophys. J. Lett. 951, L8 (2023a), arXiv:2306.16213 [astro-ph.HE] .
  8. A. D. Johnson et al. (NANOGrav),   (2023), arXiv:2306.16223 [astro-ph.HE] .
  9. G. Agazie et al. (NANOGrav),   (2023b), arXiv:2306.16220 [astro-ph.HE] .
  10. G. Agazie et al. (NANOGrav), Astrophys. J. Lett. 951, L10 (2023c), arXiv:2306.16218 [astro-ph.HE] .
  11. A. Afzal et al. (NANOGrav), Astrophys. J. Lett. 951, L11 (2023), arXiv:2306.16219 [astro-ph.HE] .
  12. H. Xu et al., Res. Astron. Astrophys. 23, 075024 (2023), arXiv:2306.16216 [astro-ph.HE] .
  13. J. Antoniadis et al.,   (2023a), 10.1051/0004-6361/202346841, arXiv:2306.16224 [astro-ph.HE] .
  14. J. Antoniadis et al.,   (2023b), arXiv:2306.16225 [astro-ph.HE] .
  15. J. Antoniadis et al.,   (2023c), arXiv:2306.16214 [astro-ph.HE] .
  16. J. Antoniadis et al.,   (2023d), arXiv:2306.16226 [astro-ph.HE] .
  17. J. Antoniadis et al.,   (2023e), arXiv:2306.16227 [astro-ph.CO] .
  18. C. Smarra et al. (European Pulsar Timing Array),   (2023), arXiv:2306.16228 [astro-ph.HE] .
  19. A. Zic et al.,   (2023), arXiv:2306.16230 [astro-ph.HE] .
  20. D. J. Reardon et al., Astrophys. J. Lett. 951, L7 (2023a), arXiv:2306.16229 [astro-ph.HE] .
  21. D. J. Reardon et al., Astrophys. J. Lett. 951, L6 (2023b), arXiv:2306.16215 [astro-ph.HE] .
  22. S. Vagnozzi,   (2023), arXiv:2306.16912 [astro-ph.CO] .
  23. S.-P. Li and K.-P. Xie,   (2023), arXiv:2307.01086 [hep-ph] .
  24. Y. Gouttenoire,   (2023), arXiv:2307.04239 [hep-ph] .
  25. Y. Gouttenoire and E. Vitagliano,   (2023), arXiv:2306.17841 [gr-qc] .
  26. B.-Q. Lu and C.-W. Chiang,   (2023), arXiv:2307.00746 [hep-ph] .
  27. K. Murai and W. Yin,   (2023), arXiv:2307.00628 [hep-ph] .
  28. S. Weinberg, Phys. Rev. D 9, 3357 (1974).
  29. R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 42, 1651 (1979).
  30. Y. Fujimoto and S. Sakakibara, Phys. Lett. B 151, 260 (1985).
  31. G. Bimonte and G. Lozano, Phys. Lett. B 366, 248 (1996), arXiv:hep-th/9507079 .
  32. J. Orloff, Phys. Lett. B 403, 309 (1997), arXiv:hep-ph/9611398 .
  33. A. Ahriche,   (2010), arXiv:1003.5045 [hep-ph] .
  34. B. Bajc and G. Senjanovic, Phys. Rev. D 61, 103506 (2000), arXiv:hep-ph/9811321 .
  35. P. Agrawal and M. Nee, JHEP 10, 105 (2021), arXiv:2103.05646 [hep-ph] .
  36. P. Meade and H. Ramani, Phys. Rev. Lett. 122, 041802 (2019), arXiv:1807.07578 [hep-ph] .
  37. I. Baldes and G. Servant, JHEP 10, 053 (2018), arXiv:1807.08770 [hep-ph] .
  38. O. Matsedonskyi and G. Servant, JHEP 09, 012 (2020), arXiv:2002.05174 [hep-ph] .
  39. O. Matsedonskyi, JHEP 04, 036 (2021), arXiv:2008.13725 [hep-ph] .
  40. X.-F. Li, Phys. Rev. D 107, 095034 (2023).
  41. M. Maggiore, Gravitational Waves. Vol. 1: Theory and Experiments (Oxford University Press, 2007).
  42. M. Maggiore, Phys. Rept. 331, 283 (2000), arXiv:gr-qc/9909001 .
  43. P. Amaro-Seoane et al. (LISA),   (2017), arXiv:1702.00786 [astro-ph.IM] .
  44. J. Mei et al. (TianQin), PTEP 2021, 05A107 (2021), arXiv:2008.10332 [gr-qc] .
  45. C. Cutler and J. Harms, Phys. Rev. D 73, 042001 (2006), arXiv:gr-qc/0511092 .
  46. M. Musha (DECIGO Working group), Proc. SPIE Int. Soc. Opt. Eng. 10562, 105623T (2017).
  47. S. Hild et al., Class. Quant. Grav. 28, 094013 (2011), arXiv:1012.0908 [gr-qc] .
  48. M. Punturo et al., Class. Quant. Grav. 27, 194002 (2010).
  49. B. P. Abbott et al. (LIGO Scientific), Class. Quant. Grav. 34, 044001 (2017), arXiv:1607.08697 [astro-ph.IM] .
  50. J. Aasi et al. (LIGO Scientific, VIRGO), Class. Quant. Grav. 32, 115012 (2015), arXiv:1410.7764 [gr-qc] .
  51. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. D 100, 061101 (2019), arXiv:1903.02886 [gr-qc] .
  52. B. Batell and A. Ghalsasi, Phys. Rev. D 107, L091701 (2023), arXiv:2109.04476 [hep-ph] .
Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)