Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Convergence rate of entropy-regularized multi-marginal optimal transport costs (2307.03023v3)

Published 6 Jul 2023 in math.OC, math.AP, and math.FA

Abstract: We investigate the convergence rate of multi-marginal optimal transport costs that are regularized with the Boltzmann-Shannon entropy, as the noise parameter $\varepsilon$ tends to $0$. We establish lower and upper bounds on the difference with the unregularized cost of the form $C\varepsilon\log(1/\varepsilon)+O(\varepsilon)$ for some explicit dimensional constants $C$ depending on the marginals and on the ground cost, but not on the optimal transport plans themselves. Upper bounds are obtained for Lipschitz costs or locally semi-concave costs for a finer estimate, and lower bounds for $\mathscr{C}2$ costs satisfying some signature condition on the mixed second derivatives that may include degenerate costs, thus generalizing results previously in the two marginals case and for non-degenerate costs. We obtain in particular matching bounds in some typical situations where the optimal plan is deterministic.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.