Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Inflation in simple one-loop effective potentials of perturbative quantum gravity (2307.02214v3)

Published 5 Jul 2023 in gr-qc and hep-th

Abstract: We study inflation in scalar-tensor perturbative quantum gravity driven by a one-loop effective potential. We consider effective potentials generated by three models. The first model describes a single scalar field with a non-vanishing mass. The second model describes a massless scalar field with non-minimal coupling to the Einstein tensor. The third model generalises the Coleman-Weinberg model for the gravitational case. The first model can be consistent with the observational data for $N\sim 70$ e-foldings. The second model can be consistent with the observational data for $N \sim 40$ e-foldings. We did not find parameters that make the generalised Coleman-Weinberg model consistent with the observational data. We discuss the implications of these results and ways to improve them with other terms of effective action.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. Alexei A. Starobinsky. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. B, 91:99–102, 1980. doi:10.1016/0370-2693(80)90670-X.
  2. Andrei D. Linde. Chaotic Inflation. Phys. Lett. B, 129:177–181, 1983. doi:10.1016/0370-2693(83)90837-7.
  3. Introduction to the theory of the early universe: Cosmological perturbations and inflationary theory. 2011. doi:10.1142/7873.
  4. Introduction to the Theory of the Early Universe: Hot big bang theory. World Scientific, Singapore, 2017. doi:10.1142/10447.
  5. V. Mukhanov. Physical Foundations of Cosmology. Cambridge University Press, Oxford, 2005. doi:10.1017/CBO9780511790553.
  6. Y. Akrami et al. Planck 2018 results. X. Constraints on inflation. Astron. Astrophys., 641:A10, 2020. arXiv:1807.06211, doi:10.1051/0004-6361/201833887.
  7. G. Hinshaw et al. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. Astrophys. J. Suppl., 208:19, 2013. arXiv:1212.5226, doi:10.1088/0067-0049/208/2/19.
  8. P. A. R. Ade et al. Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season. Phys. Rev. Lett., 127(15):151301, 2021. arXiv:2110.00483, doi:10.1103/PhysRevLett.127.151301.
  9. Planck and BICEP/Keck Array 2018 constraints on primordial gravitational waves and perspectives for future B-mode polarization measurements. Phys. Rev. D, 106(8):083528, 2022. arXiv:2208.10482, doi:10.1103/PhysRevD.106.083528.
  10. P. A. R. Ade et al. Planck 2013 results. XXII. Constraints on inflation. Astron. Astrophys., 571:A22, 2014. arXiv:1303.5082, doi:10.1051/0004-6361/201321569.
  11. Encyclopædia Inflationaris. Phys. Dark Univ., 5-6:75–235, 2014. arXiv:1303.3787, doi:10.1016/j.dark.2014.01.003.
  12. Andrei Linde. Inflationary Cosmology after Planck 2013. In 100e Ecole d’Ete de Physique: Post-Planck Cosmology, pages 231–316, 2015. arXiv:1402.0526, doi:10.1093/acprof:oso/9780198728856.003.0006.
  13. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rept., 692:1–104, 2017. arXiv:1705.11098, doi:10.1016/j.physrep.2017.06.001.
  14. Generalized G-inflation: Inflation with the most general second-order field equations. Prog. Theor. Phys., 126:511–529, 2011. arXiv:1105.5723, doi:10.1143/PTP.126.511.
  15. Higgs inflation: consistency and generalisations. JHEP, 01:016, 2011. arXiv:1008.5157, doi:10.1007/JHEP01(2011)016.
  16. Inflation scenario via the Standard Model Higgs boson and LHC. JCAP, 11:021, 2008. arXiv:0809.2104, doi:10.1088/1475-7516/2008/11/021.
  17. V. K. Oikonomou. A refined Einstein–Gauss–Bonnet inflationary theoretical framework. Class. Quant. Grav., 38(19):195025, 2021. arXiv:2108.10460, doi:10.1088/1361-6382/ac2168.
  18. R2 quantum corrected scalar field inflation. Nucl. Phys. B, 978:115779, 2022. arXiv:2204.02454, doi:10.1016/j.nuclphysb.2022.115779.
  19. V. K. Oikonomou. Non-minimal derivative coupling theories compatible with GW170817. Nucl. Phys. B, 1000:116467, 2024. arXiv:2402.02050, doi:10.1016/j.nuclphysb.2024.116467.
  20. Recent Advances in Inflation. Symmetry, 15(9):1701, 2023. arXiv:2307.16308, doi:10.3390/sym15091701.
  21. Formalizing the slow roll approximation in inflation. Phys. Rev. D, 50:7222–7232, 1994. arXiv:astro-ph/9408015, doi:10.1103/PhysRevD.50.7222.
  22. One loop divergencies in the theory of gravitation. Ann. Inst. H. Poincare Phys. Theor. A, 20:69–94, 1974.
  23. One Loop Divergences of Quantized Einstein-Maxwell Fields. Phys. Rev. D, 10:401, 1974. doi:10.1103/PhysRevD.10.401.
  24. Quantum Gravity at Two Loops. Phys. Lett. B, 160:81–86, 1985. doi:10.1016/0370-2693(85)91470-4.
  25. Effective action in quantum gravity. 1992.
  26. Radiative Corrections as the Origin of Spontaneous Symmetry Breaking. Phys. Rev. D, 7:1888–1910, 1973. doi:10.1103/PhysRevD.7.1888.
  27. R. Jackiw. Functional evaluation of the effective potential. Phys. Rev. D, 9:1686, 1974. doi:10.1103/PhysRevD.9.1686.
  28. The Generalized Schwinger-Dewitt Technique in Gauge Theories and Quantum Gravity. Phys. Rept., 119:1–74, 1985. doi:10.1016/0370-1573(85)90148-6.
  29. G. A. Vilkovisky. The Unique Effective Action in Quantum Field Theory. Nucl. Phys. B, 234:125–137, 1984. doi:10.1016/0550-3213(84)90228-1.
  30. Effective potential of scalar–tensor gravity. Class. Quant. Grav., 38(1):015012, 2021. arXiv:2007.06306, doi:10.1088/1361-6382/abc572.
  31. Effective potential of scalar-tensor gravity with quartic self-interaction of scalar field. Class. Quant. Grav., 39(5):055003, 2022. arXiv:2109.09797, doi:10.1088/1361-6382/ac4827.
  32. Boris Latosh. FeynGrav: FeynCalc extension for gravity amplitudes. Class. Quant. Grav., 39(16):165006, 2022. arXiv:2201.06812, doi:10.1088/1361-6382/ac7e15.
  33. Boris Latosh. FeynGrav 2.0. 2 2023. arXiv:2302.14310.
  34. B. N. Latosh. Basic Problems of Conservative Approaches to a Theory of Quantum Gravity. Phys. Part. Nucl., 51(5):859–878, 2020. arXiv:2003.02462, doi:10.1134/S1063779620050056.
  35. C. P. Burgess. Quantum gravity in everyday life: General relativity as an effective field theory. Living Rev. Rel., 7:5–56, 2004. arXiv:gr-qc/0311082, doi:10.12942/lrr-2004-5.
  36. N. Avdeev and A. Toporensky. On Viability of Inflation in Nonminimal Kinetic Coupling Theory. Grav. Cosmol., 27(3):269–274, 2021. arXiv:2103.00556, doi:10.1134/S0202289321030038.
  37. Ruling Out Inflation Driven by a Power Law Potential: Kinetic Coupling Does Not Help. Grav. Cosmol., 28(4):416–419, 2022. arXiv:2203.14599, doi:10.1134/S0202289322040028.
  38. Slow-Roll Inflation in Scalar-Tensor Models. JCAP, 09:007, 2019. arXiv:1905.08349, doi:10.1088/1475-7516/2019/09/007.
  39. Slow-Roll Inflation with Exponential Potential in Scalar-Tensor Models. Eur. Phys. J. C, 79(9):772, 2019. arXiv:1907.06806, doi:10.1140/epjc/s10052-019-7289-z.
  40. Coleman-Weinberg Inflation in light of Planck. Phys. Lett. B, 730:81–88, 2014. arXiv:1309.1695, doi:10.1016/j.physletb.2014.01.039.
  41. Boris Latosh. One-loop effective scalar-tensor gravity. Eur. Phys. J. C, 80(9):845, 2020. arXiv:2004.00927, doi:10.1140/epjc/s10052-020-8371-2.
  42. G-inflation: Inflation driven by the Galileon field. Phys. Rev. Lett., 105:231302, 2010. arXiv:1008.0603, doi:10.1103/PhysRevLett.105.231302.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube