Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convex Optimal Power Flow Based on Power Injection-based Equations and Its Application in Bipolar DC Distribution Network (2307.02036v1)

Published 5 Jul 2023 in eess.SY and cs.SY

Abstract: Optimal power flow (OPF) is a fundamental tool for analyzing the characteristics of bipolar DC distribution network (DCDN). However, existing OPF models face challenges in reflecting the power distribution and exchange of bipolar DCDN directly since its decision variables are voltage and current. This paper addresses this issue by establishing a convex OPF model that can be used for the planning and operation of bipolar DCDN. First, the power flow characteristics of bipolar DCDN are revealed through power injection-based equations, upon which the original OPF model is established. Next, the original OPF model undergoes a transformation into a convex OPF model based on second-order cone programming (SOCP) through variable substitution, secondorder cone relaxation, McCormick relaxation, and first-order Taylor expansion, respectively. Finally, the sequence bound tightening algorithm (STBA) is employed to tighten the boundaries of McCormick envelopes in each iteration to ensure the exactness of the convex OPF model. The effectiveness of this novel OPF model for bipolar DCDN is verified through two case studies, i.e., capacity configuration of distributed generation (DG) and operation optimization of bipolar DCDN.

Summary

We haven't generated a summary for this paper yet.