Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 72 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 200 tok/s Pro
2000 character limit reached

The Quantum Advantage in Binary Teams and the Coordination Dilemma: Part I (2307.01762v1)

Published 4 Jul 2023 in eess.SY, cs.SY, and quant-ph

Abstract: We have shown that entanglement assisted stochastic strategies allow access to strategic measures beyond the classically correlated measures accessible through passive common randomness, and thus attain a quantum advantage in decentralised control. In this two part series of articles, we investigate the decision theoretic origins of the quantum advantage within a broad superstructure of problem classes. Each class in our binary team superstructure corresponds to a parametric family of cost functions with a distinct algebraic structure. In this part, identify the only problem classes that benefit from quantum strategies. We find that these cost structures admit a special decision-theoretic feature -- `the coordination dilemma'. Our analysis hence reveals some intuition towards the utility of non-local quantum correlations in decentralised control.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. V. Ananthram and V. Borkar, “Common randomness and distributed control: A counterexample,” Systems and Control Letters, 2007.
  2. S. A. Deshpande and A. A. Kulkarni, “The quantum advantage in decentralized control,” https://arxiv.org/abs/2207.12075, 2022.
  3. L. S. e. a. Yin J, Li YH, “Entanglement-based secure quantum cryptography over 1,120 kilometres.” Nature, vol. 582, pp. 501–505, 2020.
  4. T. R. Gisin N, “Quantum communication,” Nature Photon, vol. 1, pp. 165–171, 2007.
  5. N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys., vol. 86, pp. 419–478, Apr 2014. [Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.86.419
  6. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev., vol. 47, pp. 777–780, May 1935. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRev.47.777
  7. N. Bohr, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev., vol. 48, pp. 696–702, Oct 1935. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRev.48.696
  8. J. S. Bell, “On the einstein podolsky rosen paradox,” Physics Physique Fizika, vol. 1, pp. 195–200, Nov 1964. [Online]. Available: https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195
  9. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett., vol. 23, pp. 880–884, Oct 1969. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.23.880
  10. A. Aspect, P. Grangier, and G. Roger, “Experimental realization of einstein-podolsky-rosen-bohm gedankenexperiment: A new violation of bell’s inequalities,” Phys. Rev. Lett., vol. 49, pp. 91–94, Jul 1982. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.49.91
  11. V. S. Borkar, “A convex analytic approach to markov decision processes,” Probability Theory and Related Fields, vol. 78, pp. 583–602, Aug. 1988.
  12. A. A. Kulkarni and T. P. Coleman, “An optimizer’s approach to stochastic control problems with nonclassical information structures,” IEEE Transactions on Automatic Control, vol. 60, no. 4, pp. 937–949, 2015.
  13. N. Saldi and S. Yüksel, “Geometry of information structures, strategic measures and associated stochastic control topologies,” Probability Surveys, vol. 19, no. none, pp. 450 – 532, 2022. [Online]. Available: https://doi.org/10.1214/20-PS356
  14. W. Matthews., “A linear program for the finite block length converse of polyanskiy-poor-verdu’ via nonsignaling codes,” IEEE Transactions on Information Theory, vol. 58, 2012.
  15. M. H. R. Ramanathan, J. Tuziemski and P. Horodecki, “No quantum realization of extremal no-signaling boxes,” Phys. Rev. Lett., vol. 117, 2016.
  16. M. W. R.F. Werner, “All multipartite bell-correlation inequalities for two dichotomic observables per site,” Phy. Rev. A, vol. 64, 2001.
  17. M. Navascués, S. Pironio, and A. Acín, “A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations,” New Journal of Physics, vol. 10, no. 7, p. 073013, jul 2008. [Online]. Available: https://dx.doi.org/10.1088/1367-2630/10/7/073013
  18. D. R. Sandu Popescu, “Quantum nonloc ality as an axiom,” Foundations of Physics, vol. 24, pp. 379–385, 1994.
  19. J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, and D. Roberts, “Nonlocal correlations as an information-theoretic resource,” Phys. Rev. A, vol. 71, p. 022101, Feb 2005. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.71.022101
  20. K. T. Goh, J. Kaniewski, E. Wolfe, T. Vértesi, X. Wu, Y. Cai, Y.-C. Liang, and V. Scarani, “Geometry of the set of quantum correlations,” Phys. Rev. A, vol. 97, p. 022104, Feb 2018. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.97.022104
  21. A. A. K. Shashank A Deshpande, “Elimination of 1-3 Classes.” https://tinyurl.com/C13Eliminate, 2022, [Online; accessed Nov-2022].
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.