The Quantum Advantage in Binary Teams and the Coordination Dilemma: Part I (2307.01762v1)
Abstract: We have shown that entanglement assisted stochastic strategies allow access to strategic measures beyond the classically correlated measures accessible through passive common randomness, and thus attain a quantum advantage in decentralised control. In this two part series of articles, we investigate the decision theoretic origins of the quantum advantage within a broad superstructure of problem classes. Each class in our binary team superstructure corresponds to a parametric family of cost functions with a distinct algebraic structure. In this part, identify the only problem classes that benefit from quantum strategies. We find that these cost structures admit a special decision-theoretic feature -- `the coordination dilemma'. Our analysis hence reveals some intuition towards the utility of non-local quantum correlations in decentralised control.
- V. Ananthram and V. Borkar, “Common randomness and distributed control: A counterexample,” Systems and Control Letters, 2007.
- S. A. Deshpande and A. A. Kulkarni, “The quantum advantage in decentralized control,” https://arxiv.org/abs/2207.12075, 2022.
- L. S. e. a. Yin J, Li YH, “Entanglement-based secure quantum cryptography over 1,120 kilometres.” Nature, vol. 582, pp. 501–505, 2020.
- T. R. Gisin N, “Quantum communication,” Nature Photon, vol. 1, pp. 165–171, 2007.
- N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys., vol. 86, pp. 419–478, Apr 2014. [Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.86.419
- A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev., vol. 47, pp. 777–780, May 1935. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRev.47.777
- N. Bohr, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev., vol. 48, pp. 696–702, Oct 1935. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRev.48.696
- J. S. Bell, “On the einstein podolsky rosen paradox,” Physics Physique Fizika, vol. 1, pp. 195–200, Nov 1964. [Online]. Available: https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195
- J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett., vol. 23, pp. 880–884, Oct 1969. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.23.880
- A. Aspect, P. Grangier, and G. Roger, “Experimental realization of einstein-podolsky-rosen-bohm gedankenexperiment: A new violation of bell’s inequalities,” Phys. Rev. Lett., vol. 49, pp. 91–94, Jul 1982. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.49.91
- V. S. Borkar, “A convex analytic approach to markov decision processes,” Probability Theory and Related Fields, vol. 78, pp. 583–602, Aug. 1988.
- A. A. Kulkarni and T. P. Coleman, “An optimizer’s approach to stochastic control problems with nonclassical information structures,” IEEE Transactions on Automatic Control, vol. 60, no. 4, pp. 937–949, 2015.
- N. Saldi and S. Yüksel, “Geometry of information structures, strategic measures and associated stochastic control topologies,” Probability Surveys, vol. 19, no. none, pp. 450 – 532, 2022. [Online]. Available: https://doi.org/10.1214/20-PS356
- W. Matthews., “A linear program for the finite block length converse of polyanskiy-poor-verdu’ via nonsignaling codes,” IEEE Transactions on Information Theory, vol. 58, 2012.
- M. H. R. Ramanathan, J. Tuziemski and P. Horodecki, “No quantum realization of extremal no-signaling boxes,” Phys. Rev. Lett., vol. 117, 2016.
- M. W. R.F. Werner, “All multipartite bell-correlation inequalities for two dichotomic observables per site,” Phy. Rev. A, vol. 64, 2001.
- M. Navascués, S. Pironio, and A. Acín, “A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations,” New Journal of Physics, vol. 10, no. 7, p. 073013, jul 2008. [Online]. Available: https://dx.doi.org/10.1088/1367-2630/10/7/073013
- D. R. Sandu Popescu, “Quantum nonloc ality as an axiom,” Foundations of Physics, vol. 24, pp. 379–385, 1994.
- J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, and D. Roberts, “Nonlocal correlations as an information-theoretic resource,” Phys. Rev. A, vol. 71, p. 022101, Feb 2005. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.71.022101
- K. T. Goh, J. Kaniewski, E. Wolfe, T. Vértesi, X. Wu, Y. Cai, Y.-C. Liang, and V. Scarani, “Geometry of the set of quantum correlations,” Phys. Rev. A, vol. 97, p. 022104, Feb 2018. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.97.022104
- A. A. K. Shashank A Deshpande, “Elimination of 1-3 Classes.” https://tinyurl.com/C13Eliminate, 2022, [Online; accessed Nov-2022].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.