Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polynomial-time Approximation of Independent Set Parameterized by Treewidth (2307.01341v1)

Published 3 Jul 2023 in cs.DS

Abstract: We prove the following result about approximating the maximum independent set in a graph. Informally, we show that any approximation algorithm with a ``non-trivial'' approximation ratio (as a function of the number of vertices of the input graph $G$) can be turned into an approximation algorithm achieving almost the same ratio, albeit as a function of the treewidth of $G$. More formally, we prove that for any function $f$, the existence of a polynomial time $(n/f(n))$-approximation algorithm yields the existence of a polynomial time $O(tw \cdot\log{f(tw)}/f(tw))$-approximation algorithm, where $n$ and $tw$ denote the number of vertices and the width of a given tree decomposition of the input graph. By pipelining our result with the state-of-the-art $O(n \cdot (\log \log n)2/\log3 n)$-approximation algorithm by Feige (2004), this implies an $O(tw \cdot (\log \log tw)3/\log3 tw)$-approximation algorithm.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. Approximating the independence number via the theta-function. Math. Program., 80:253–264, 1998. doi:10.1007/BF01581168.
  2. Inapproximability of vertex cover and independent set in bounded degree graphs. Theory Comput., 7(1):27–43, 2011. doi:10.4086/toc.2011.v007a003.
  3. New tools and connections for exponential-time approximation. Algorithmica, 81:3993–4009, 2019.
  4. On the lovász theta function for independent sets in sparse graphs. SIAM J. Comput., 47(3):1039–1055, 2018. doi:10.1137/15M1051002.
  5. Parallel algorithms with optimal speedup for bounded treewidth. SIAM J. Comput., 27(6):1725–1746, 1998. doi:10.1137/S0097539795289859.
  6. Parameterized Algorithms. Springer, 2015. doi:10.1007/978-3-319-21275-3.
  7. Approximation algorithms for optimization problems in graphs with superlogarithmic treewidth. Information processing letters, 94(2):49–53, 2005.
  8. Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012.
  9. Uriel Feige. Approximating maximum clique by removing subgraphs. SIAM Journal on Discrete Mathematics, 18(2):219–225, 2004.
  10. Improved approximation algorithms for minimum weight vertex separators. SIAM J. Comput., 38(2):629–657, 2008. doi:10.1137/05064299X.
  11. Magnús M. Halldórsson. Approximations of weighted independent set and hereditary subset problems. J. Graph Algorithms Appl., 4(1):1–16, 2000. doi:10.7155/jgaa.00020.
  12. Improved approximations of independent sets in bounded-degree graphs via subgraph removal. Nord. J. Comput., 1(4):475–492, 1994.
  13. Eran Halperin. Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs. In David B. Shmoys, editor, Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, January 9-11, 2000, San Francisco, CA, USA, pages 329–337. ACM/SIAM, 2000. URL: http://dl.acm.org/citation.cfm?id=338219.338269.
  14. Johan Hastad. Clique is hard to approximate within n/sup 1-/spl epsiv. In Proceedings of 37th Conference on Foundations of Computer Science, pages 627–636. IEEE, 1996.
  15. Better inapproximability results for maxclique, chromatic number and min-3lin-deletion. In Automata, Languages and Programming: 33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part I 33, pages 226–237. Springer, 2006.
  16. Ton Kloks. Treewidth: computations and approximations. Springer, 1994.

Summary

We haven't generated a summary for this paper yet.