Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Fine-Grained Classification of the Complexity of Evaluating the Tutte Polynomial on Integer Points Parameterized by Treewidth and Cutwidth (2307.01046v1)

Published 3 Jul 2023 in cs.CC and cs.DS

Abstract: We give a fine-grained classification of evaluating the Tutte polynomial $T(G;x,y)$ on all integer points on graphs with small treewidth and cutwidth. Specifically, we show for any point $(x,y) \in \mathbb{Z}2$ that either - can be computed in polynomial time, - can be computed in $2{O(tw)}n{O(1)}$ time, but not in $2{o(ctw)}n{O(1)}$ time assuming the Exponential Time Hypothesis (ETH), - can be computed in $2{O(tw \log tw)}n{O(1)}$ time, but not in $2{o(ctw \log ctw)}n{O(1)}$ time assuming the ETH, where we assume tree decompositions of treewidth $tw$ and cutwidth decompositions of cutwidth $ctw$ are given as input along with the input graph on $n$ vertices and point $(x,y)$. To obtain these results, we refine the existing reductions that were instrumental for the seminal dichotomy by Jaeger, Welsh and Vertigan~[Math. Proc. Cambridge Philos. Soc'90]. One of our technical contributions is a new rank bound of a matrix that indicates whether the union of two forests is a forest itself, which we use to show that the number of forests of a graph can be counted in $2{O(tw)}n{O(1)}$ time.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. Artur Andrzejak. An algorithm for the Tutte polynomials of graphs of bounded treewidth. Discret. Math., 190(1-3):39–54, 1998. doi:10.1016/S0012-365X(98)00113-7.
  2. Rodney J. Baxter. Exactly Solved Models in Statistical Mechanics, pages 5–63. URL: https://www.worldscientific.com/doi/abs/10.1142/9789814415255_0002, arXiv:https://www.worldscientific.com/doi/pdf/10.1142/9789814415255_0002, doi:10.1142/9789814415255_0002.
  3. Computing the Tutte polynomial in vertex-exponential time. In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 677–686. IEEE Computer Society, 2008. doi:10.1109/FOCS.2008.40.
  4. Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput., 243:86–111, 2015. doi:10.1016/j.ic.2014.12.008.
  5. Fine-grained dichotomies for the Tutte plane and Boolean #csp. Algorithmica, 81(2):541–556, 2019. doi:10.1007/s00453-018-0472-z.
  6. Thomas H Brylawski. The Tutte polynomial. In Matroid Theory and Its Applications: Lectures Given at the Centro Internazionale Matematico Estivo. Varenna (como), Italy, 1980.
  7. Introduction to Algorithms, 3rd Edition. MIT Press, 2009. URL: http://mitpress.mit.edu/books/introduction-algorithms.
  8. Tight conditional lower bounds for counting perfect matchings on graphs of bounded treewidth, cliquewidth, and genus, pages 1650–1669. URL: https://epubs.siam.org/doi/abs/10.1137/1.9781611974331.ch113, arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611974331.ch113, doi:10.1137/1.9781611974331.ch113.
  9. Fast Hamiltonicity checking via bases of perfect matchings. J. ACM, 65(3):12:1–12:46, 2018. doi:10.1145/3148227.
  10. Solving connectivity problems parameterized by treewidth in single exponential time, 2011. URL: https://arxiv.org/abs/1103.0534, doi:10.48550/ARXIV.1103.0534.
  11. Solving connectivity problems parameterized by treewidth in single exponential time. ACM Trans. Algorithms, 18(2):17:1–17:31, 2022. doi:10.1145/3506707.
  12. Exponential time complexity of the permanent and the Tutte polynomial. ACM Transactions on Algorithms, 10(4):1–32, aug 2014. URL: https://doi.org/10.1145%2F2635812, doi:10.1145/2635812.
  13. Tight Bounds for Counting Colorings and Connected Edge Sets Parameterized by Cutwidth. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022), pages 36:1–36:20, 2022. URL: https://arxiv.org/abs/2110.02730, doi:10.48550/ARXIV.2110.02730.
  14. On the complexity of k-sat. J. Comput. Syst. Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.
  15. On the computational complexity of the Jones and Tutte polynomials. Mathematical Proceedings of the Cambridge Philosophical Society, 108(1):35–53, 1990. doi:10.1017/S0305004100068936.
  16. Lars Jaffke and Bart M. P. Jansen. Fine-grained parameterized complexity analysis of graph coloring problems. Discret. Appl. Math., 327:33–46, 2023. doi:10.1016/j.dam.2022.11.011.
  17. Mark Jerrum. Two-dimensional monomer-dimer systems are computationally intractable. Journal of Statistical Physics, 48(1-2):121–134, July 1987. doi:10.1007/BF01010403.
  18. P.W. Kasteleyn and F. Harary. Graph Theory and Theoretical Physics, chapter Graph theory and crystal physics, pages 43–110. 1967. arXiv:https://doi.org/10.1063/1.3035700, doi:10.1063/1.3035700.
  19. Phase transitions for the Ising model on the closed Cayley tree. Physica A: Statistical Mechanics and its Applications, 119(1):230–242, 1983. URL: https://www.sciencedirect.com/science/article/pii/0378437183901577, doi:https://doi.org/10.1016/0378-4371(83)90157-7.
  20. Slightly superexponential parameterized problems. SIAM J. Comput., 47(3):675–702, 2018. doi:10.1137/16M1104834.
  21. Steven D. Noble. Evaluating the Tutte polynomial for graphs of bounded tree-width. Comb. Probab. Comput., 7(3):307–321, 1998. URL: http://journals.cambridge.org/action/displayAbstract?aid=46641.
  22. Xin-Zhuang Chen Peng-Fei Wan. Computing the number of k𝑘kitalic_k-component spanning forests of a graph with bounded treewidth. Journal of the Operations Research Society of China, 7(2):385, 2019. URL: https://www.jorsc.shu.edu.cn/EN/abstract/article_11289.shtml, doi:10.1007/s40305-019-00241-4.

Summary

We haven't generated a summary for this paper yet.