Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Hilbert Ladders: Multi-Layer Neural Networks in Function Space (2307.01177v2)

Published 3 Jul 2023 in cs.LG, math.FA, math.OC, math.PR, and stat.ML

Abstract: To characterize the function space explored by neural networks (NNs) is an important aspect of learning theory. In this work, noticing that a multi-layer NN generates implicitly a hierarchy of reproducing kernel Hilbert spaces (RKHSs) - named a neural Hilbert ladder (NHL) - we define the function space as an infinite union of RKHSs, which generalizes the existing Barron space theory of two-layer NNs. We then establish several theoretical properties of the new space. First, we prove a correspondence between functions expressed by L-layer NNs and those belonging to L-level NHLs. Second, we prove generalization guarantees for learning an NHL with a controlled complexity measure. Third, we derive a non-Markovian dynamics of random fields that governs the evolution of the NHL which is induced by the training of multi-layer NNs in an infinite-width mean-field limit. Fourth, we show examples of depth separation in NHLs under the ReLU activation function. Finally, we perform numerical experiments to illustrate the feature learning aspect of NN training through the lens of NHLs.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com