Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Functional-Space Mean-Field Theory of Partially-Trained Three-Layer Neural Networks (2210.16286v1)

Published 28 Oct 2022 in cs.LG, math.OC, math.PR, and stat.ML

Abstract: To understand the training dynamics of neural networks (NNs), prior studies have considered the infinite-width mean-field (MF) limit of two-layer NN, establishing theoretical guarantees of its convergence under gradient flow training as well as its approximation and generalization capabilities. In this work, we study the infinite-width limit of a type of three-layer NN model whose first layer is random and fixed. To define the limiting model rigorously, we generalize the MF theory of two-layer NNs by treating the neurons as belonging to functional spaces. Then, by writing the MF training dynamics as a kernel gradient flow with a time-varying kernel that remains positive-definite, we prove that its training loss in $L_2$ regression decays to zero at a linear rate. Furthermore, we define function spaces that include the solutions obtainable through the MF training dynamics and prove Rademacher complexity bounds for these spaces. Our theory accommodates different scaling choices of the model, resulting in two regimes of the MF limit that demonstrate distinctive behaviors while both exhibiting feature learning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zhengdao Chen (12 papers)
  2. Eric Vanden-Eijnden (76 papers)
  3. Joan Bruna (119 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.