Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Limits on scalar-induced gravitational waves from the stochastic background by pulsar timing array observations (2306.17822v4)

Published 30 Jun 2023 in gr-qc, astro-ph.CO, astro-ph.GA, astro-ph.HE, and hep-ph

Abstract: Recently, the NANOGrav, PPTA, EPTA, and CPTA collaborations independently reported their evidence of the Stochastic Gravitational Waves Background (SGWB). While the inferred gravitational-wave background amplitude and spectrum are consistent with astrophysical expectations for a signal from the population of supermassive black-hole binaries (SMBHBs), the search for new physics remains plausible in this observational window. In this work, we explore the possibility of explaining such a signal by the scalar-induced gravitational waves (IGWs) in the very early universe. We use a parameterized broken power-law function as a general description of the energy spectrum of the SGWB and fit it to the new results of NANOGrav, PPTA and EPTA. We find that this approach can put constraints on the parameters of IGW energy spectrum and further yield restrictions on various inflation models that may produce primordial black holes (PBHs) in the early universe, which is also expected to be examined by the forthcoming space-based GW experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (104)
  1. Detweiler SL. Pulsar timing measurements and the search for gravitational waves. Astrophys J 1979;234:1100–1104.
  2. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys Rev Lett 2016;116:061102.
  3. Starobinsky AA. A New Type of Isotropic Cosmological Models Without Singularity. Phys Lett B 1980;91:99–102.
  4. Guth AH. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Phys Rev D 1981;23:347–356.
  5. Linde AD. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Phys Lett B 1982;108:389–393.
  6. Starobinsky AA. Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations. Phys Lett B 1982;117:175–178.
  7. Kodama H, Sasaki M. Cosmological Perturbation Theory. Prog Theor Phys Suppl 1984;78:1–166.
  8. Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys Rept 1992;215:203–333.
  9. Lyth DH, Riotto A. Particle physics models of inflation and the cosmological density perturbation. Phys Rept 1999;314:1–146.
  10. The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background. Astrophys J Lett 2023;951:L8.
  11. Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array. Astrophys J Lett 2023;951:L6.
  12. The second data release from the European Pulsar Timing Array III. Search for gravitational wave signals. Astron Astrophys 2023;678:A50.
  13. Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I. Res Astron Astrophys 2023;23:075024.
  14. The NANOGrav 15 yr Data Set: Search for Signals from New Physics. Astrophys J Lett 2023;951:L11.
  15. The second data release from the European Pulsar Timing Array: V. Implications for massive black holes, dark matter and the early Universe. arXiv:2306.16227, 2023.
  16. Burke-Spolaor S, et al. The Astrophysics of Nanohertz Gravitational Waves. Astron Astrophys Rev 2019;27:5.
  17. The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays. Mon Not Roy Astron Soc 2008;390:192.
  18. Dark Matter Spike surrounding Supermassive Black Holes Binary and the nanohertz Stochastic Gravitational Wave Background. arXiv:2306.17143, 2023.
  19. Binary Supermassive Black Holes Orbiting Dark Matter Solitons: From the Dual AGN in UGC4211 to NanoHertz Gravitational Waves. arXiv:2306.17821, 2023.
  20. Footprints of the QCD Crossover on Cosmological Gravitational Waves at Pulsar Timing Arrays. arXiv:2306.17136, 2023.
  21. Astrophysical neutrino oscillations after pulsar timing array analyses. arXiv:2306.16977, 2023.
  22. Self-interacting dark matter implied by nano-Hertz gravitational waves. arXiv:2306.16966, 2023.
  23. Footprints of Axion-Like Particle in Pulsar Timing Array Data and JWST Observations. arXiv:2306.17022, 2023.
  24. The nanohertz stochastic gravitational-wave background from cosmic string Loops and the abundant high redshift massive galaxies. arXiv:2306.17150, 2023.
  25. Cosmic Superstrings Revisited in Light of NANOGrav 15-Year Data. arXiv:2306.17147, 2023.
  26. Vagnozzi S. Inflationary interpretation of the stochastic gravitational wave background signal detected by pulsar timing array experiments. JHEAp 2023;39:81–98.
  27. NANOGrav signal from a dark conformal phase transition. Phys Lett B 2023;846:138203.
  28. Gravitational Waves from Domain Wall Collapse, and Application to Nanohertz Signals with QCD-coupled Axions. arXiv:2306.17146, 2023.
  29. The recent gravitational wave observation by pulsar timing arrays and primordial black holes: the importance of non-gaussianities. arXiv:2306.17149, 2023.
  30. Pulsar Timing Array Stochastic Background from light Kaluza-Klein resonances. arXiv:2306.17071, 2023.
  31. Gravitational Waves from SMBH Binaries in Light of the NANOGrav 15-Year Data. arXiv:2306.17021, 2023.
  32. QCD-Collapsed Domain Walls: QCD Phase Transition and Gravitational Wave Spectroscopy. arXiv:2306.17160, 2023.
  33. Implication of nano-Hertz stochastic gravitational wave background on ultralight axion particles. arXiv:2306.17113, 2023.
  34. Ghoshal A, Strumia A. Probing the Dark Matter density with gravitational waves from super-massive binary black holes. arXiv:2306.17158, 2023.
  35. Searching for gravitational wave burst in PTA data with piecewise linear functions. arXiv:2306.17130, 2023.
  36. PTArcade. arXiv:2306.16377, 2023.
  37. Towards distinguishing Dirac from Majorana neutrino mass with gravitational waves. arXiv:2306.05389, 2023.
  38. Mirror QCD phase transition as the origin of the nanohertz Stochastic Gravitational-Wave Background. arXiv:2306.16769, 2023.
  39. Primordial magnetic field as a common solution of nanohertz gravitational waves and Hubble tension. arXiv:2306.17124, 2023.
  40. Have pulsar timing array methods detected a cosmological phase transition? arXiv:2306.17205, 2023.
  41. Implications for the non-Gaussianity of curvature perturbation from pulsar timing arrays. arXiv:2307.01102, 2023.
  42. Konoplya RA, Zhidenko A. Asymptotic tails of massive gravitons in light of pulsar timing array observations. arXiv:2307.01110, 2023.
  43. Axion-Gauge Dynamics During Inflation as the Origin of Pulsar Timing Array Signals and Primordial Black Holes. arXiv:2307.02322, 2023.
  44. Gravitational wave sources for Pulsar Timing Arrays. arXiv:2307.02376, 2023.
  45. Primordial gravitational waves in the nano-Hertz regime and PTA data – towards solving the GW inverse problem. arXiv:2306.14856, 2023.
  46. Scalar-induced gravitational wave interpretation of PTA data: the role of scalar fluctuation propagation speed. arXiv:2307.08552, 2023.
  47. Inflation and primordial black holes as dark matter. Phys Rev D 1994;50:7173–7178.
  48. Primordial Black Holes as Dark Matter. Phys Rev D 2016;94:083504.
  49. Carr B, Kuhnel F. Primordial Black Holes as Dark Matter: Recent Developments. Ann Rev Nucl Part Sci 2020;70:355–394.
  50. Pulsar Timing Array Constraints on Primordial Black Holes with NANOGrav 11-Year Dataset. Phys Rev Lett 2020;124:251101.
  51. Rapidly growing primordial black holes as seeds of the massive high-redshift JWST Galaxies. arXiv:2303.09391, 2023.
  52. Boyle LA, Steinhardt PJ. Probing the early universe with inflationary gravitational waves. Phys Rev D 2008;77:063504.
  53. The Cosmological gravitational wave background from primordial density perturbations. Phys Rev D 2007;75:123518.
  54. Gravitational Wave Spectrum Induced by Primordial Scalar Perturbations. Phys Rev D 2007;76:084019.
  55. Yuan C, Huang QG. A topic review on probing primordial black hole dark matter with scalar induced gravitational waves. arXiv:2103.04739, 2023.
  56. Saito R, Yokoyama J. Gravitational-Wave Constraints on the Abundance of Primordial Black Holes. Prog Theor Phys 2010;123:867–886. [Erratum: Prog.Theor.Phys. 126, 351–352 (2011)].
  57. Prospective constraints on the primordial black hole abundance from the stochastic gravitational-wave backgrounds produced by coalescing events and curvature perturbations. Phys Rev D 2019;99:103531. [Erratum: Phys.Rev.D 101, 069901 (2020)].
  58. Zhao ZC, Wang S. Bayesian Implications for the Primordial Black Holes from NANOGrav’s Pulsar-Timing Data Using the Scalar-Induced Gravitational Waves. Universe 2023;9:157.
  59. Gravitational waves from a universe filled with primordial black holes. JCAP 2021;03:053.
  60. Domènech G. Scalar Induced Gravitational Waves Review. Universe 2021;7:398.
  61. Gravitational waves from first order cosmological phase transitions. Phys Rev Lett 1992;69:2026–2029.
  62. Gravitational radiation from first order phase transitions. Phys Rev D 1994;49:2837–2851.
  63. Gravitational wave generation from bubble collisions in first-order phase transitions: An analytic approach. Phys Rev D 2008;77:124015.
  64. Gravitational waves from the sound of a first order phase transition. Phys Rev Lett 2014;112:041301.
  65. Kibble TWB. Topology of Cosmic Domains and Strings. J Phys A 1976;9:1387–1398.
  66. Vilenkin A. Gravitational radiation from cosmic strings. Phys Lett B 1981;107:47–50.
  67. Hogan CJ, Rees MJ. Gravitational interactions of cosmic strings. Nature 1984;311:109–113.
  68. Caldwell RR, Allen B. Cosmological constraints on cosmic string gravitational radiation. Phys Rev D 1992;45:3447–3468.
  69. Vilenkin A. Gravitational Field of Vacuum Domain Walls and Strings. Phys Rev D 1981;23:852–857.
  70. Studies of the motion and decay of axion walls bounded by strings. Phys Rev D 1999;59:023505.
  71. Gravitational Waves from Collapsing Domain Walls. JCAP 2010;05:032.
  72. Search for the Gravitational-wave Background from Cosmic Strings with the Parkes Pulsar Timing Array Second Data Release. Astrophys J 2022;936:20.
  73. NANOGrav signal from the end of inflation and the LIGO mass and heavier primordial black holes. Phys Lett B 2022;835:137542.
  74. Domain Wall Network: A Dual Solution for Gravitational Waves and Hubble Tension? arXiv:2212.07871, 2022.
  75. Constraints on holographic QCD phase transitions from PTA observations. arXiv:2308.07257, 2023.
  76. Maggiore M. Gravitational Waves. Vol. 1: Theory and Experiments. Oxford University Press, 2007. ISBN 978-0-19-171766-6, 978-0-19-852074-0.
  77. Inflationary primordial black holes for the LIGO gravitational wave events and pulsar timing array experiments. Phys Rev D 2017;95:123510.
  78. Kohri K, Terada T. Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations. Phys Rev D 2018;97:123532.
  79. A Cosmological Signature of the SM Higgs Instability: Gravitational Waves. JCAP 2018;09:012.
  80. Testing primordial black holes as dark matter with LISA. Phys Rev D 2019;99:103521.
  81. When Primordial Black Holes from Sound Speed Resonance Meet a Stochastic Background of Gravitational Waves. Phys Rev D 2019;100:043518.
  82. Zhao W, Zhang Y. Relic gravitational waves and their detection. Phys Rev D 2006;74:043503.
  83. Pi S, Sasaki M. Gravitational Waves Induced by Scalar Perturbations with a Lognormal Peak. JCAP 2020;09:037.
  84. Planck 2018 results. VI. Cosmological parameters. Astron Astrophys 2020;641:A6. [Erratum: Astron.Astrophys. 652, C4 (2021)].
  85. Vaskonen V, Veermäe H. Did NANOGrav see a signal from primordial black hole formation? Phys Rev Lett 2021;126:051303.
  86. emcee: The MCMC Hammer. Publ Astron Soc Pac 2013;125:306–312.
  87. Laser Interferometer Space Antenna. arXiv:1702.00786, 2017.
  88. TianQin: a space-borne gravitational wave detector. Class Quant Grav 2016;33:035010.
  89. Taiji program: Gravitational-wave sources. Int J Mod Phys A 2020;35:2050075.
  90. Primordial black hole formation in a double inflation model in supergravity. Phys Rev D 1998;57:6050–6056.
  91. Primordial black hole formation from an axionlike curvaton model. Phys Rev D 2013;87:063519.
  92. Primordial Black Holes from Sound Speed Resonance during Inflation. Phys Rev Lett 2018;121:081306.
  93. Chen C, Cai YF. Primordial black holes from sound speed resonance in the inflaton-curvaton mixed scenario. JCAP 2019;10:068.
  94. Dirac-Born-Infeld realization of sound speed resonance mechanism for primordial black holes. Phys Rev D 2020;102:063526.
  95. Primordial black holes—perspectives in gravitational wave astronomy. Class Quant Grav 2018;35:063001.
  96. Steepest growth of the power spectrum and primordial black holes. JCAP 2019;06:028.
  97. Mahbub R. Primordial black hole formation in inflationary α𝛼\alphaitalic_α-attractor models. Phys Rev D 2020;101:023533.
  98. Özsoy O, Tasinato G. On the slope of the curvature power spectrum in non-attractor inflation. JCAP 2020;04:048.
  99. Dissecting the growth of the power spectrum for primordial black holes. Phys Rev D 2019;100:103529.
  100. Atal V, Domènech G. Probing non-Gaussianities with the high frequency tail of induced gravitational waves. JCAP 2021;06:001.
  101. Log-dependent slope of scalar induced gravitational waves in the infrared regions. Phys Rev D 2020;101:043019.
  102. Gravitational Waves Induced by non-Gaussian Scalar Perturbations. Phys Rev Lett 2019;122:201101.
  103. Implications of Pulsar Timing Array Data for Scalar-Induced Gravitational Waves and Primordial Black Holes: Primordial Non-Gaussianity fNLsubscript𝑓NLf_{\mathrm{NL}}italic_f start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT Considered. arXiv:2307.00572, 2023.
  104. Induced Gravitational Waves with Kination Era for Recent Pulsar Timing Array Signals. arXiv:2309.00228, 2023.
Citations (67)

Summary

We haven't generated a summary for this paper yet.