Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting new fundamental fields with Pulsar Timing Arrays (2307.01093v1)

Published 3 Jul 2023 in gr-qc and astro-ph.HE

Abstract: Strong evidence of the existence of the Stochastic Gravitational-Wave Background (SGWB) has been reported by the NANOGrav, PPTA, EPTA and CPTA collaborations. The Bayesian posteriors of the Gravitational-Wave Background (GWB) amplitude and spectrum are compatible with current astrophysical predictions for the GWB from the population of supermassive black hole binaries (SMBHBs). In this paper, we discuss the corrections arising from the extra scalar or vector radiation to the characteristic dimensionless strain in PTA experiments and explore the possibility to detect charges surrounding massive black holes, which could give rise to SGWB with vector or scalar polarizations. The parametrized frequency-dependent characteristic dimensionless strain is used to take a Bayesian analysis and the Bayes factor is also computed for charged and neutral SMBHBs. The Bayesian posterior of GWB tensor amplitude is $\log_{10} A_T=-14.85{+0.26}_{-0.38}$ and spectral exponent $\alpha=-0.60{+0.32}_{-0.36}$. The Bayesian posterior for vector or scalar amplitude $A_{V, S}$ is nearly flat and there is nearly no constraint from the current observation data. The Bayesian factor is $0.71$ far less than 100, so the current observation can not support the existence of the charged SMBHB.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. B. P. Abbott et al. (LIGO Scientific, Virgo), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016a).
  2. B. P. Abbott et al. (LIGO Scientific, Virgo), GW150914: The Advanced LIGO Detectors in the Era of First Discoveries, Phys. Rev. Lett. 116, 131103 (2016b).
  3. B. P. Abbott et al. (LIGO Scientific, Virgo), GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, Phys. Rev. X 9, 031040 (2019).
  4. R. Abbott et al. (LIGO Scientific, Virgo), GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run, Phys. Rev. X 11, 021053 (2021a).
  5. R. Abbott et al. (LIGO Scientific, VIRGO), GWTC-2.1: Deep Extended Catalog of Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run, arXiv:2108.01045 [gr-qc] .
  6. G. Agazie et al. (NANOGrav), The NANOGrav 15-year Data Set: Evidence for a Gravitational-Wave Background, Astrophys. J. Lett. 951, 10.3847/2041-8213/acdac6 (2023a).
  7. G. Agazie et al. (NANOGrav), The NANOGrav 15-year Data Set: Observations and Timing of 68 Millisecond Pulsars, Astrophys. J. Lett. 951, 10.3847/2041-8213/acda9a (2023b).
  8. J. Antoniadis et al., The second data release from the European Pulsar Timing Array III. Search for gravitational wave signals, arXiv:2306.16214 [astro-ph.HE] .
  9. J. Antoniadis et al., The second data release from the European Pulsar Timing Array I. The dataset and timing analysis, arXiv:2306.16224 [astro-ph.HE] .
  10. J. Antoniadis et al., The second data release from the European Pulsar Timing Array: V. Implications for massive black holes, dark matter and the early Universe, arXiv:2306.16227 [astro-ph.CO] .
  11. D. J. Reardon et al., Search for an isotropic gravitational-wave background with the Parkes Pulsar Timing Array, Astrophys. J. Lett. 951, 10.3847/2041-8213/acdd02 (2023a).
  12. A. Zic et al., The Parkes Pulsar Timing Array Third Data Release, arXiv:2306.16230 [astro-ph.HE] .
  13. D. J. Reardon et al., The Gravitational-wave Background Null Hypothesis: Characterizing Noise in Millisecond Pulsar Arrival Times with the Parkes Pulsar Timing Array, Astrophys. J. Lett. 951, L7 (2023b).
  14. H. Xu et al., Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I, Res. Astron. Astrophys. 23, 075024 (2023).
  15. R. W. Hellings and G. S. Downs, UPPER LIMITS ON THE ISOTROPIC GRAVITATIONAL RADIATION BACKGROUND FROM PULSAR TIMING ANALYSIS, Astrophys. J. Lett. 265, L39 (1983).
  16. J. Kormendy and D. Richstone, Inward bound: The Search for supermassive black holes in galactic nuclei, Ann. Rev. Astron. Astrophys. 33, 581 (1995).
  17. W. DeRocco and J. A. Dror, Searching For Stochastic Gravitational Waves Below a Nanohertz, arXiv:2304.13042 [astro-ph.HE] .
  18. A. Ghoshal and A. Strumia, Probing the Dark Matter density with gravitational waves from super-massive binary black holes, arXiv:2306.17158 [astro-ph.CO] .
  19. G. Agazie et al. (NANOGrav), The NANOGrav 15-year Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational Wave Background, arXiv:2306.16220 [astro-ph.HE] .
  20. A. Afzal et al. (NANOGrav), The NANOGrav 15-year Data Set: Search for Signals from New Physics, Astrophys. J. Lett. 951, 10.3847/2041-8213/acdc91 (2023).
  21. A. Sesana, A. Vecchio, and C. N. Colacino, The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays, Mon. Not. Roy. Astron. Soc. 390, 192 (2008).
  22. L. Z. Kelley, L. Blecha, and L. Hernquist, Massive Black Hole Binary Mergers in Dynamical Galactic Environments, Mon. Not. Roy. Astron. Soc. 464, 3131 (2017).
  23. B. Kocsis and A. Sesana, Gas-driven massive black hole binaries: signatures in the nhz gravitational wave background, Monthly Notices of the Royal Astronomical Society 411, 1467 (2011).
  24. N. Yunes and X. Siemens, Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar Timing-Arrays, Living Rev. Rel. 16, 9 (2013).
  25. H. An and C. Yang, Gravitational Waves Produced by Domain Walls During Inflation, arXiv:2304.02361 [hep-ph] .
  26. Z.-Y. Qiu and Z.-H. Yu, Gravitational waves from cosmic strings associated with pseudo-Nambu-Goldstone dark matter, arXiv:2304.02506 [hep-ph] .
  27. Z.-M. Zeng, J. Liu, and Z.-K. Guo, Enhanced curvature perturbations from spherical domain walls nucleated during inflation, arXiv:2301.07230 [astro-ph.CO] .
  28. Z. Arzoumanian et al. (NANOGrav Collaboration), Searching for Gravitational Waves from Cosmological Phase Transitions with the NANOGrav 12.5-Year Dataset, Phys. Rev. Lett. 127, 251302 (2021).
  29. Y. Gouttenoire and T. Volansky, Primordial Black Holes from Supercooled Phase Transitions, arXiv:2305.04942 [hep-ph] .
  30. V. Dandoy, V. Domcke, and F. Rompineve, Search for scalar induced gravitational waves in the International Pulsar Timing Array Data Release 2 and NANOgrav 12.5 years dataset, arXiv:2302.07901 [astro-ph.CO] .
  31. J.-X. Zhao, X.-H. Liu, and N. Li, Primordial black holes and scalar-induced gravitational waves from the perturbations on the inflaton potential in peak theory, Phys. Rev. D 107, 043515 (2023).
  32. Y. Cai, M. Zhu, and Y.-S. Piao, Primordial black holes from null energy condition violation during inflation, arXiv:2305.10933 [gr-qc] .
  33. K. Inomata, K. Kohri, and T. Terada, The Detected Stochastic Gravitational Waves and Sub-Solar Primordial Black Holes, arXiv:2306.17834 [astro-ph.CO] .
  34. B. A. Campbell, N. Kaloper, and K. A. Olive, Classical hair for Kerr-Newman black holes in string gravity, Phys. Lett. B 285, 199 (1992).
  35. S. Mignemi and N. R. Stewart, Charged black holes in effective string theory, Phys. Rev. D 47, 5259 (1993).
  36. N. Yunes and L. C. Stein, Non-Spinning Black Holes in Alternative Theories of Gravity, Phys. Rev. D 83, 104002 (2011).
  37. B. Kleihaus, J. Kunz, and E. Radu, Rotating Black Holes in Dilatonic Einstein-Gauss-Bonnet Theory, Phys. Rev. Lett. 106, 151104 (2011).
  38. T. P. Sotiriou and S.-Y. Zhou, Black hole hair in generalized scalar-tensor gravity, Phys. Rev. Lett. 112, 251102 (2014a).
  39. T. P. Sotiriou and S.-Y. Zhou, Black hole hair in generalized scalar-tensor gravity: An explicit example, Phys. Rev. D 90, 124063 (2014b).
  40. G. Antoniou, A. Bakopoulos, and P. Kanti, Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories, Phys. Rev. Lett. 120, 131102 (2018).
  41. D. D. Doneva and S. S. Yazadjiev, New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories, Phys. Rev. Lett. 120, 131103 (2018).
  42. V. Cardoso, C. F. B. Macedo, and R. Vicente, Eccentricity evolution of compact binaries and applications to gravitational-wave physics, Phys. Rev. D 103, 023015 (2021).
  43. B. Holdom, Two U(1)’s and Epsilon Charge Shifts, Phys. Lett. B 166, 196 (1986).
  44. P. D. Scharre and C. M. Will, Testing scalar tensor gravity using space gravitational wave interferometers, Phys. Rev. D 65, 042002 (2002).
  45. E. Barausse, N. Yunes, and K. Chamberlain, Theory-Agnostic Constraints on Black-Hole Dipole Radiation with Multiband Gravitational-Wave Astrophysics, Phys. Rev. Lett. 116, 241104 (2016).
  46. T. Damour and G. Esposito-Farese, Nonperturbative strong field effects in tensor - scalar theories of gravitation, Phys. Rev. Lett. 70, 2220 (1993).
  47. S. M. Du, Scalar Stochastic Gravitational-Wave Background in Brans-Dicke Theory of Gravity, Phys. Rev. D 99, 044057 (2019).
  48. E. S. Phinney, A Practical theorem on gravitational wave backgrounds, arXiv:astro-ph/0108028 .
  49. A. Klein et al., Science with the space-based interferometer eLISA: Supermassive black hole binaries, Phys. Rev. D 93, 024003 (2016).
  50. N. Aghanim et al. (Planck), Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)].
  51. Q. Liang and M. Trodden, Detecting the stochastic gravitational wave background from massive gravity with pulsar timing arrays, Phys. Rev. D 104, 084052 (2021).
  52. W. Ratzinger and P. Schwaller, Whispers from the dark side: Confronting light new physics with NANOGrav data, SciPost Phys. 10, 047 (2021).
  53. G. Ashton et al., BILBY: A user-friendly Bayesian inference library for gravitational-wave astronomy, Astrophys. J. Suppl. 241, 27 (2019).
  54. J. Skilling, Nested sampling for general Bayesian computation, Bayesian Analysis 1, 833 (2006).
Citations (11)

Summary

We haven't generated a summary for this paper yet.