Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s
GPT-5 High 23 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Searching for gravitational wave burst in PTA data with piecewise linear functions (2306.17130v2)

Published 29 Jun 2023 in gr-qc, astro-ph.HE, and astro-ph.IM

Abstract: Transient gravitational waves (aka gravitational wave bursts) within the nanohertz frequency band could be generated by a variety of astrophysical phenomena such as the encounter of supermassive black holes, the kinks or cusps in cosmic strings, or other as-yet-unknown physical processes. Radio-pulses emitted from millisecond pulsars could be perturbed by passing gravitational waves, hence the correlation of the perturbations in a pulsar timing array can be used to detect and characterize burst signals with a duration of $\mathcal{O}(1\text{-}10)$ years. We propose a fully Bayesian framework for the analysis of the pulsar timing array data, where the burst waveform is generically modeled by piecewise straight lines, and the waveform parameters in the likelihood can be integrated out analytically. As a result, with merely three parameters (in addition to those describing the pulsars' intrinsic and background noise), one is able to efficiently search for the existence and the sky location of {a burst signal}. If a signal is present, the posterior of the waveform can be found without further Bayesian inference. We demonstrate this model by analyzing simulated data sets containing a stochastic gravitational wave background {and a burst signal generated by the parabolic encounter of two supermassive black holes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (64)
  1. R. w. Hellings and G. s. Downs, Astrophys. J. Lett. 265, L39 (1983).
  2. M. A. McLaughlin, Class. Quant. Grav. 30, 224008 (2013), arXiv:1310.0758 [astro-ph.IM] .
  3. G. Agazie et al. (NANOGrav), Astrophys. J. Lett. 951, 10.3847/2041-8213/acdac6 (2023a), arXiv:2306.16213 [astro-ph.HE] .
  4. J. Kormendy and L. C. Ho, Ann. Rev. Astron. Astrophys. 51, 511 (2013), arXiv:1304.7762 [astro-ph.CO] .
  5. G. Agazie et al. (NANOGrav),   (2023b), arXiv:2306.16220 [astro-ph.HE] .
  6. L. P. Grishchuk, Zh. Eksp. Teor. Fiz. 67, 825 (1974).
  7. A. A. Starobinsky, JETP Lett. 30, 682 (1979).
  8. V. A. Rubakov, M. V. Sazhin, and A. V. Veryaskin, Phys. Lett. B 115, 189 (1982).
  9. R. Fabbri and M. d. Pollock, Phys. Lett. B 125, 445 (1983).
  10. A. Kosowsky, M. S. Turner, and R. Watkins, Phys. Rev. D 45, 4514 (1992a).
  11. A. Kosowsky, M. S. Turner, and R. Watkins, Phys. Rev. Lett. 69, 2026 (1992b).
  12. A. Kosowsky and M. S. Turner, Phys. Rev. D 47, 4372 (1993), arXiv:astro-ph/9211004 .
  13. M. Kamionkowski, A. Kosowsky, and M. S. Turner, Phys. Rev. D 49, 2837 (1994), arXiv:astro-ph/9310044 .
  14. C. Caprini, R. Durrer, and G. Servant, Phys. Rev. D 77, 124015 (2008), arXiv:0711.2593 [astro-ph] .
  15. S. J. Huber and T. Konstandin, JCAP 09, 022, arXiv:0806.1828 [hep-ph] .
  16. J. T. Giblin, Jr. and J. B. Mertens, JHEP 12, 042, arXiv:1310.2948 [hep-th] .
  17. J. T. Giblin and J. B. Mertens, Phys. Rev. D 90, 023532 (2014), arXiv:1405.4005 [astro-ph.CO] .
  18. Z. Arzoumanian et al. (NANOGrav), Phys. Rev. Lett. 127, 251302 (2021), arXiv:2104.13930 [astro-ph.CO] .
  19. A. Vilenkin, Phys. Lett. B 107, 47 (1981).
  20. T. Damour and A. Vilenkin, Phys. Rev. D 71, 063510 (2005), arXiv:hep-th/0410222 .
  21. W. Buchmuller, V. Domcke, and K. Schmitz, Phys. Lett. B 811, 135914 (2020), arXiv:2009.10649 [astro-ph.CO] .
  22. J. Ellis and M. Lewicki, Phys. Rev. Lett. 126, 041304 (2021), arXiv:2009.06555 [astro-ph.CO] .
  23. J. J. Blanco-Pillado, K. D. Olum, and J. M. Wachter, Phys. Rev. D 103, 103512 (2021), arXiv:2102.08194 [astro-ph.CO] .
  24. M. Hindmarsh and J. Kume, JCAP 04, 045, arXiv:2210.06178 [astro-ph.CO] .
  25. A. Afzal et al. (NANOGrav), Astrophys. J. Lett. 951, 10.3847/2041-8213/acdc91 (2023), arXiv:2306.16219 [astro-ph.HE] .
  26. J. Antoniadis et al.,   (2023a), arXiv:2306.16227 [astro-ph.CO] .
  27. C. Smarra et al.,   (2023), arXiv:2306.16228 [astro-ph.HE] .
  28. A. Sesana, A. Vecchio, and M. Volonteri, Mon. Not. Roy. Astron. Soc. 394, 2255 (2009), arXiv:0809.3412 [astro-ph] .
  29. P. A. Rosado, A. Sesana, and J. Gair, Mon. Not. Roy. Astron. Soc. 451, 2417 (2015), arXiv:1503.04803 [astro-ph.HE] .
  30. B. Bécsy, N. J. Cornish, and L. Z. Kelley, Astrophys. J. 941, 119 (2022), arXiv:2207.01607 [astro-ph.HE] .
  31. D. R. B. Yardley et al., Mon. Not. Roy. Astron. Soc. 407, 669 (2010), arXiv:1005.1667 [astro-ph.GA] .
  32. Z. Arzoumanian et al. (NANOGrav), Astrophys. J. 794, 141 (2014), arXiv:1404.1267 [astro-ph.GA] .
  33. X. J. Zhu et al., Mon. Not. Roy. Astron. Soc. 444, 3709 (2014), arXiv:1408.5129 [astro-ph.GA] .
  34. S. Babak et al., Mon. Not. Roy. Astron. Soc. 455, 1665 (2016), arXiv:1509.02165 [astro-ph.CO] .
  35. K. Aggarwal et al., Astrophys. J. 880, 2 (2019), arXiv:1812.11585 [astro-ph.GA] .
  36. Z. Arzoumanian et al. (NANOGrav),   (2023), arXiv:2301.03608 [astro-ph.GA] .
  37. M. Falxa et al. (IPTA), Mon. Not. Roy. Astron. Soc. 521, 5077 (2023), arXiv:2303.10767 [gr-qc] .
  38. G. Agazie et al. (NANOGrav), Astrophys. J. Lett.  (2023c), arXiv:2306.16222 [astro-ph.HE] .
  39. J. Antoniadis et al.,   (2023b), arXiv:2306.16226 [astro-ph.HE] .
  40. T. Damour and A. Vilenkin, Phys. Rev. Lett. 85, 3761 (2000), arXiv:gr-qc/0004075 .
  41. T. Damour and A. Vilenkin, Phys. Rev. D 64, 064008 (2001), arXiv:gr-qc/0104026 .
  42. N. Yonemaru et al., Mon. Not. Roy. Astron. Soc. 501, 701 (2021), arXiv:2011.13490 [gr-qc] .
  43. J. M. Cordes and F. A. Jenet, Astrophys. J. 752, 54 (2012).
  44. D. R. Madison, J. M. Cordes, and S. Chatterjee, Astrophys. J. 788, 141 (2014), arXiv:1404.5682 [astro-ph.HE] .
  45. R. van Haasteren and Y. Levin, Mon. Not. Roy. Astron. Soc. 401, 2372 (2010), arXiv:0909.0954 [astro-ph.IM] .
  46. Z. Arzoumanian et al. (NANOGrav), Astrophys. J. 810, 150 (2015), arXiv:1501.05343 [astro-ph.GA] .
  47. J. B. Wang et al., Mon. Not. Roy. Astron. Soc. 446, 1657 (2015), arXiv:1410.3323 [astro-ph.GA] .
  48. K. Aggarwal et al. (NANOGrav), Astrophys. J. 889, 38 (2020), arXiv:1911.08488 [astro-ph.HE] .
  49. M. J. Szczepańczyk et al., Phys. Rev. D 107, 062002 (2023), arXiv:2210.01754 [gr-qc] .
  50. L. S. Finn and A. N. Lommen, Astrophys. J. 718, 1400 (2010), arXiv:1004.3499 [astro-ph.IM] .
  51. X. Deng, Phys. Rev. D 90, 024020 (2014), arXiv:1404.0663 [gr-qc] .
  52. D. R. Madison et al., Mon. Not. Roy. Astron. Soc. 455, 3662 (2016), arXiv:1510.08068 [astro-ph.IM] .
  53. B. Bécsy and N. J. Cornish, Class. Quant. Grav. 38, 095012 (2021), arXiv:2011.01942 [gr-qc] .
  54. B. Bécsy, R. Burnette, and J. Taylor, in preparation .
  55. R. van Haasteren and M. Vallisneri, Phys. Rev. D 90, 104012 (2014), arXiv:1407.1838 [gr-qc] .
  56. S. R. Taylor, Nanohertz gravitational wave astronomy (CRC Press, 2021).
  57. E. Phinney, arXiv preprint astro-ph/0108028  (2001).
  58. R. van Haasteren and Y. Levin, Mon. Not. Roy. Astron. Soc. 428, 1147 (2013), arXiv:1202.5932 [astro-ph.IM] .
  59. J. M. Dickey, The Annals of Mathematical Statistics , 204 (1971).
  60. J. Skilling, in Aip conference proceedings, Vol. 735 (American Institute of Physics, 2004) pp. 395–405.
  61. D. Sivia and J. Skilling, Data analysis: a Bayesian tutorial (OUP Oxford, 2006).
  62. R. Shaw, M. Bridges, and M. P. Hobson, Mon. Not. Roy. Astron. Soc. 378, 1365 (2007), arXiv:astro-ph/0701867 .
  63. P. Mukherjee, D. Parkinson, and A. R. Liddle, Astrophys. J. Lett. 638, L51 (2006), arXiv:astro-ph/0508461 .
  64. F. Feroz, M. P. Hobson, and M. Bridges, Mon. Not. Roy. Astron. Soc. 398, 1601 (2009), arXiv:0809.3437 [astro-ph] .
Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.