Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Classical-Assisted Quantum Ground State Preparation with Tensor Network States and Monte Carlo Sampling (2306.16831v1)

Published 29 Jun 2023 in quant-ph

Abstract: Quantum computing offers potential solutions for finding ground states in condensed-matter physics and chemistry. However, achieving effective ground state preparation is also computationally hard for arbitrary Hamiltonians. It is necessary to propose certain assumptions to make this problem efficiently solvable, including preparing a trial state of a non-trivial overlap with the genuine ground state. Here, we propose a classical-assisted quantum ground state preparation method for quantum many-body systems, combining Tensor Network States (TNS) and Monte Carlo (MC) sampling as a heuristic method to prepare a trial state with a non-trivial overlap with the genuine ground state. We extract a sparse trial state by sampling from TNS, which can be efficiently prepared by a quantum algorithm on early fault-tolerant quantum computers. Our method demonstrates a polynomial improvement in scaling of overlap between the trial state and genuine ground state compared to random trial states, as evidenced by numerical tests on the spin-$1/2$ $J_1$-$J_2$ Heisenberg model. Furthermore, our method is a novel approach to hybridize a classical numerical method and a quantum algorithm and brings inspiration to ground state preparation in other fields.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.