Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Graph Uncertainty Principle and Eigenvector Delocalization (2306.15810v1)

Published 27 Jun 2023 in cs.IT, math.IT, math.OC, and math.PR

Abstract: Uncertainty principles present an important theoretical tool in signal processing, as they provide limits on the time-frequency concentration of a signal. In many real-world applications the signal domain has a complicated irregular structure that can be described by a graph. In this paper, we focus on the global uncertainty principle on graphs and propose new connections between the uncertainty bound for graph signals and graph eigenvectors delocalization. We also derive uncertainty bounds for random $d$-regular graphs and provide numerically efficient upper and lower approximations for the uncertainty bound on an arbitrary graph.

Summary

We haven't generated a summary for this paper yet.