Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Generalized Scaling for the Constrained Maximum-Entropy Sampling Problem (2306.14661v2)

Published 26 Jun 2023 in math.OC

Abstract: The best practical techniques for exact solution of instances of the constrained maximum-entropy sampling problem, a discrete-optimization problem arising in the design of experiments, are via a branch-and-bound framework, working with a variety of concave continuous relaxations of the objective function. A standard and computationally-important bound-enhancement technique in this context is (ordinary) scaling, via a single positive parameter. Scaling adjusts the shape of continuous relaxations to reduce the gaps between the upper bounds and the optimal value. We extend this technique to generalized scaling, employing a positive vector of parameters, which allows much more flexibility and thus potentially reduces the gaps further. We give mathematical results aimed at supporting algorithmic methods for computing optimal generalized scalings, and we give computational results demonstrating the performance of generalized scaling on benchmark problem instances.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.