Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Near-Field Beamforming for STAR-RIS Networks (2306.14587v1)

Published 26 Jun 2023 in cs.IT, eess.SP, and math.IT

Abstract: Recently, simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) have received significant research interest. The employment of large STAR-RIS and high-frequency signaling inevitably make the near-field propagation dominant in wireless communications. In this work, a STAR-RIS aided near-field multiple-input multiple-multiple (MIMO) communication framework is proposed. A weighted sum rate maximization problem for the joint optimization of the active beamforming at the base station (BS) and the transmission/reflection-coefficients (TRCs) at the STAR-RIS is formulated. The non-convex problem is solved by a block coordinate descent (BCD)-based algorithm. In particular, under given STAR-RIS TRCs, the optimal active beamforming matrices are obtained by solving a convex quadratically constrained quadratic program. For given active beamforming matrices, two algorithms are suggested for optimizing the STAR-RIS TRCs: a penalty-based iterative (PEN) algorithm and an element-wise iterative (ELE) algorithm. The latter algorithm is conceived for STAR-RISs with a large number of elements. Numerical results illustrate that: i) near-field beamforming for STAR-RIS aided MIMO communications significantly improves the achieved weighted sum rate compared with far-field beamforming; ii) the near-field channels facilitated by the STAR-RIS provide enhanced degrees-of-freedom and accessibility for the multi-user MIMO system; and iii) the BCD-PEN algorithm achieves better performance than the BCD-ELE algorithm, while the latter has a significantly lower computational complexity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. H. Li, Y. Liu, X. Mu, Y. Chen, and Z. Pan, “Joint beamforming for STAR-RIS in near-field communications,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2023, Submitted.
  2. W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, “The road towards 6G: A comprehensive survey,” IEEE Open j. Commun. Soc., vol. 2, pp. 334–366, 2021.
  3. Y. Liu, X. Mu, J. Xu, R. Schober, Y. Hao, H. V. Poor, and L. Hanzo, “STAR: Simultaneous transmission and reflection for 360° coverage by intelligent surfaces,” IEEE Trans. Wireless Commun., vol. 28, no. 6, pp. 102–109, 2021.
  4. J. Xu, Y. Liu, X. Mu, R. Schober, and H. V. Poor, “STAR-RISs: A correlated T&R phase-shift model and practical phase-shift configuration strategies,” IEEE J. Sel. Top. Signal Process., vol. 16, no. 5, pp. 1097–1111, 2022.
  5. J. Zuo, Y. Liu, Z. Ding, L. Song, and H. V. Poor, “Joint design for simultaneously transmitting and reflecting (STAR) RIS assisted NOMA systems,” IEEE Trans. Wireless Commun., vol. 22, no. 1, pp. 611–626, 2022.
  6. M. Di Renzo, A. Zappone, M. Debbah, M.-S. Alouini, C. Yuen, J. de Rosny, and S. Tretyakov, “Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2450–2525, 2020.
  7. Y. Liu, X. Liu, X. Mu, T. Hou, J. Xu, M. Di Renzo, and N. Al-Dhahir, “Reconfigurable intelligent surfaces: Principles and opportunities,” IEEE Commun. Surv. Tutor., vol. 23, no. 3, pp. 1546–1577, 2021.
  8. Y. Liu, J. Xu, Z. Wang, X. Mu, J. Zhang, and P. Zhang, “Simultaneously transmitting and reflecting (STAR) RIS for 6G: Fundamentals, recent advances, and future directions,” arXiv preprint arXiv:2304.14180, 2023.
  9. X. Mu, Y. Liu, L. Guo, J. Lin, and R. Schober, “Simultaneously transmitting and reflecting (STAR) RIS aided wireless communications,” IEEE Trans. Wireless Commun., vol. 21, no. 5, pp. 3083–3098, 2022.
  10. Y. Liu, X. Mu, R. Schober, and H. V. Poor, “Simultaneously transmitting and reflecting (STAR)-RISs: A coupled phase-shift model,” in Proc. IEEE Intl. Conf. Commun. (ICC), May 2022, pp. 2840–2845.
  11. Z. Wang, X. Mu, J. Xu, and Y. Liu, “Simultaneously transmitting and reflecting surface (STARS) for Terahertz communications,” arXiv preprint arXiv:2212.00497, 2022.
  12. T. Wang, F. Fang, and Z. Ding, “Joint phase shift and beamforming design in a multi-user MISO STAR-RIS assisted downlink NOMA network,” IEEE Trans. Veh. Technol., pp. 1–12, 2023.
  13. C. Wu, Y. Liu, X. Mu, X. Gu, and O. A. Dobre, “Coverage characterization of STAR-RIS networks: NOMA and OMA,” IEEE Commun. Lett., vol. 25, no. 9, pp. 3036–3040, 2021.
  14. K. T. Selvan and R. Janaswamy, “Fraunhofer and Fresnel distances: Unified derivation for aperture antennas,” IEEE Trans. Antennas Propag., vol. 59, no. 4, pp. 12–15, 2017.
  15. E. Björnson, Ö. T. Demir, and L. Sanguinetti, “A primer on near-field beamforming for arrays and reconfigurable intelligent surfaces,” in Proc. 55th Asilomar Conf. on Signals, Syst., and Comput., Oct. 2021, pp. 105–112.
  16. N. J. Myers and R. W. Heath, “Infocus: A spatial coding technique to mitigate misfocus in near-field LoS beamforming,” IEEE Trans. Commun., vol. 21, no. 4, pp. 2193–2209, 2022.
  17. D. A. Miller, “Waves, modes, communications, and optics: A tutorial,” Adv. Opt. Photonics, vol. 11, no. 3, pp. 679–825, 2019.
  18. X. Zhang, H. Zhang, and Y. C. Eldar, “Near-field sparse channel representation and estimation in 6G wireless communications,” arXiv preprint arXiv:2212.13527, 2022.
  19. H. Zhang, N. Shlezinger, F. Guidi, D. Dardari, M. F. Imani, and Y. C. Eldar, “Beam focusing for near-field multiuser MIMO communications,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 7476–7490, 2022.
  20. Z. Wu, M. Cui, and L. Dai, “Multiple access for near-field communications: SDMA or LDMA?” arXiv preprint arXiv:2208.06349, 2022.
  21. Z. Zhang, Y. Liu, Z. Wang, X. Mu, and J. Chen, “Physical layer security in near-field communications: What will be changed?” arXiv preprint arXiv:2302.04189, 2023.
  22. H. Zhang, N. Shlezinger, F. Guidi, D. Dardari, M. F. Imani, and Y. C. Eldar, “Near-field wireless power transfer with dynamic metasurface antennas,” in 2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC), Jul. 2022, pp. 1–5.
  23. S. Koenig et al., “Wireless sub-THz communication system with high data rate enabled by RF photonics and active MMIC technology,” in IEEE Photon. J., 2014, pp. 414–415.
  24. H. Elayan, O. Amin, B. Shihada, R. M. Shubair, and M.-S. Alouini, “Terahertz band: The last piece of RF spectrum puzzle for communication systems,” IEEE Open j. Commun. Soc., vol. 1, pp. 1–32, 2020.
  25. M. Cui, L. Dai, R. Schober, and L. Hanzo, “Near-field wideband beamforming for extremely large antenna arrays,” arXiv preprint arXiv:2109.10054, 2021.
  26. D. A. Miller, “Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling strengths,” Appl. Opt., vol. 39, no. 11, pp. 1681–1699, 2000.
  27. Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel,” IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4331–4340, 2011.
  28. M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” [Online]. Available:http://cvxr.com/cvx, 2014.
  29. C. Pan, H. Ren, K. Wang, W. Xu, M. Elkashlan, A. Nallanathan, and L. Hanzo, “Multicell MIMO communications relying on intelligent reflecting surfaces,” IEEE Trans. Wireless Commun., vol. 19, no. 8, pp. 5218–5233, 2020.
  30. A. Ben-Tal and M. Zibulevsky, “Penalty/barrier multiplier methods for convex programming problems,” SIAM J. Optim., vol. 7, no. 2, pp. 347–366, 1997.
  31. Q. T. Dinh and M. Diehl, “Local convergence of sequential convex programming for nonconvex optimization,” Recent Advances in Optimization and its Applications in Engineering, Berlin, Germany: Springer, 2010.
  32. I. M. Bomze, V. F. Demyanov, R. Fletcher, T. Terlaky, I. Pólik, and T. Terlaky, “Interior point methods for nonlinear optimization,” Nonlinear Optimization: Lectures given at the CIME Summer School held in Cetraro, Italy, July 1-7, 2007, pp. 215–276, 2010.
  33. H. Niu, Z. Chu, F. Zhou, P. Xiao, and N. Al-Dhahir, “Weighted sum rate optimization for STAR-RIS-assisted MIMO system,” IEEE Trans. Veh. Technol., vol. 71, no. 2, pp. 2122–2127, 2021.
  34. P. P. Perera, V. G. Warnasooriya, D. Kudathanthirige, and H. A. Suraweera, “Sum rate maximization in STAR-RIS assisted full-duplex communication systems,” in Proc. IEEE Intl. Conf. Commun. (ICC), May 2022, pp. 3281–3286.
  35. Z. Wang, X. Mu, Y. Liu, and R. Schober, “Coupled phase-shift STAR-RISs: A general optimization framework,” IEEE Commun. Lett., vol. 12, no. 2, pp. 207–211, 2023.
Citations (7)

Summary

We haven't generated a summary for this paper yet.