Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Meta-Learning for Resource Allocation in Uplink Multi STAR-RIS-aided NOMA System (2401.07100v2)

Published 13 Jan 2024 in cs.IT, eess.SP, and math.IT

Abstract: Simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) is a novel technology which enables the full-space coverage. In this letter, a multi STAR-RIS-aided system using non-orthogonal multiple access in an uplink transmission is considered, where the multi-order reflections among multiple STAR-RISs assist the transmission from the single-antenna users to the multi-antenna base station. Specifically, the total sum rate maximization problem is solved by jointly optimizing the active beamforming, power allocation, transmission and reflection beamforming at the STAR-RIS, and user-STAR-RIS assignment. To solve the non-convex optimization problem, a novel deep reinforcement learning algorithm is proposed which integrates meta-learning and deep deterministic policy gradient (DDPG), denoted by Meta-DDPG. Numerical results demonstrate that our proposed Meta-DDPG algorithm outperforms the conventional DDPG algorithm with $53\%$ improvement, while multi-order reflections among multi STAR-RISs yields to $14.1\%$ enhancement in the total data rate.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. X. Mu, Y. Liu, L. Guo, J. Lin, and R. Schober, “Simultaneously transmitting and reflecting (STAR) RIS aided wireless communications,” IEEE Trans. Wirel. Commun., vol. 21, no. 5, pp. 3083–3098, 2022.
  2. C.-X. Wang, X. You, X. Gao, X. Zhu, Z. Li, C. Zhang, H. Wang, Y. Huang, Y. Chen, H. Haas et al., “On the road to 6G: Visions, requirements, key technologies and testbeds,” IEEE Commun. Surv. Tutor., 2023.
  3. L. Lv, J. Chen, Q. Ni, Z. Ding, and H. Jiang, “Cognitive non-orthogonal multiple access with cooperative relaying: A new wireless frontier for 5G spectrum sharing,” IEEE Commun. Mag., vol. 56, no. 4, pp. 188–195, 2018.
  4. S. Javadi, H. Shafiei, M. Forouzanmehr, A. Khalili, and H. H. Nguyen, “Resource allocation for IRS-assisted MC MISO-NOMA system,” IET Commun., vol. 16, no. 13, pp. 1617–1627, 2022.
  5. J. Zuo, Y. Liu, Z. Ding, L. Song, and H. V. Poor, “Joint design for simultaneously transmitting and reflecting (STAR) RIS assisted NOMA systems,” IEEE Trans. Wirel. Commun., vol. 22, no. 1, pp. 611–626, 2023.
  6. Q. Gao, Y. Liu, X. Mu, M. Jia, D. Li, and L. Hanzo, “Joint location and beamforming design for STAR-RIS assisted NOMA systems,” IEEE Trans. Commun., vol. 71, no. 4, pp. 2532–2546, 2023.
  7. P. Wang, H. Wang, and Y. Fu, “Average rate maximization for mobile STAR-RIS-aided NOMA system,” IEEE Commun. Lett., vol. 27, no. 5, pp. 1362–1366, 2023.
  8. A. Huang, X. Mu, and L. Guo, “STAR-RIS assisted downlink active and uplink backscatter communications with NOMA,” IEEE Trans. Veh. Technol., pp. 1–15, 2023.
  9. J. Kim, S. Hosseinalipour, T. Kim, D. J. Love, and C. G. Brinton, “Multi-IRS-assisted multi-cell uplink MIMO communications under imperfect csi: A deep reinforcement learning approach,” in 2021 IEEE IEEE Int. Conf. on Commun. Workshops (ICC Workshops), 2021, pp. 1–7.
  10. W. Mei and R. Zhang, “Joint base station-IRS-user association in multi-IRS-aided wireless network,” in GLOBECOM 2020 - 2020 IEEE Glob. Commun. Conf., 2020, pp. 1–6.
  11. H. Wang, Z. Shi, Y. Fu, and R. Song, “Downlink multi-IRS aided NOMA system with second-order reflection,” IEEE Wirel. Commun. Lett., vol. 12, no. 6, pp. 1022–1026, 2023.
  12. M. Soleymani, I. Santamaria, and E. A. Jorswieck, “Spectral and energy efficiency maximization of MISO STAR-RIS-assisted URLLC systems,” IEEE Access, vol. 11, pp. 70 833–70 852, 2023.
  13. N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and D. I. Kim, “Applications of deep reinforcement learning in communications and networking: A survey,” IEEE Commun. Surv. Tutor., vol. 21, no. 4, pp. 3133–3174, 2019.
  14. T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-learning in neural networks: A survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 9, pp. 5149–5169, 2021.

Summary

We haven't generated a summary for this paper yet.