Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decentralized Multi-Robot Formation Control Using Reinforcement Learning (2306.14489v1)

Published 26 Jun 2023 in cs.RO, cs.AI, and cs.MA

Abstract: This paper presents a decentralized leader-follower multi-robot formation control based on a reinforcement learning (RL) algorithm applied to a swarm of small educational Sphero robots. Since the basic Q-learning method is known to require large memory resources for Q-tables, this work implements the Double Deep Q-Network (DDQN) algorithm, which has achieved excellent results in many robotic problems. To enhance the system behavior, we trained two different DDQN models, one for reaching the formation and the other for maintaining it. The models use a discrete set of robot motions (actions) to adapt the continuous nonlinear system to the discrete nature of RL. The presented approach has been tested in simulation and real experiments which show that the multi-robot system can achieve and maintain a stable formation without the need for complex mathematical models and nonlinear control laws.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. J. Alonso-Mora, S. Baker, and D. Rus, “Multi-robot formation control and object transport in dynamic environments via constrained optimization,” The International Journal of Robotics Research, vol. 36, no. 9, pp. 1000–1021, Aug. 2017. [Online]. Available: https://doi.org/10.1177/0278364917719333
  2. M. Saska, V. Kratky, V. Spurny, and T. Baca, “Documentation of dark areas of large historical buildings by a formation of unmanned aerial vehicles using model predictive control,” in 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA).   IEEE, Sept. 2017. [Online]. Available: https://doi.org/10.1109/etfa.2017.8247654
  3. R. D. Arnold, H. Yamaguchi, and T. Tanaka, “Search and rescue with autonomous flying robots through behavior-based cooperative intelligence,” Journal of International Humanitarian Action, vol. 3, no. 1, Dec. 2018. [Online]. Available: https://doi.org/10.1186/s41018-018-0045-4
  4. A. Baranzadeh and A. V. Savkin, “A distributed control algorithm for area search by a multi-robot team,” Robotica, vol. 35, no. 6, p. 1452–1472, 2017.
  5. D. Scharf, F. Hadaegh, and S. Ploen, “A survey of spacecraft formation flying guidance and control. part ii: control,” in Proceedings of the 2004 American Control Conference, vol. 4, 2004, pp. 2976–2985 vol.4.
  6. P. K. C. Wang, F. Y. Hadaegh, and K. Lau, “Synchronized formation rotation and attitude control of multiple free-flying spacecraft,” Journal of Guidance, Control, and Dynamics, vol. 22, no. 1, pp. 28–35, Jan. 1999. [Online]. Available: https://doi.org/10.2514/2.4367
  7. H. Su, X. Wang, and Z. Lin, “Flocking of multi-agents with a virtual leader,” IEEE Transactions on Automatic Control, vol. 54, no. 2, pp. 293–307, Feb. 2009. [Online]. Available: https://doi.org/10.1109/tac.2008.2010897
  8. T. Balch and R. Arkin, “Behavior-based formation control for multirobot teams,” IEEE Transactions on Robotics and Automation, vol. 14, no. 6, pp. 926–939, 1998.
  9. C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” in Proceedings of the 14th annual conference on Computer graphics and interactive techniques - SIGGRAPH ’87.   ACM Press, 1987. [Online]. Available: https://www.red3d.com/cwr/papers/1987/boids.html
  10. C. B. Low and Q. S. Ng, “A flexible virtual structure formation keeping control for fixed-wing uavs,” in 2011 9th IEEE International Conference on Control and Automation (ICCA), 2011, pp. 621–626.
  11. D. Miklić, S. Bogdan, R. Fierro, and Y. Song, “A grid-based approach to formation reconfiguration for a class of robots with non-holonomic constraints,” European journal of control, vol. 18, no. 2, pp. 162–181, 2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0947358012705423
  12. Z. Lin, L. Wang, Z. Han, and M. Fu, “Distributed formation control of multi-agent systems using complex laplacian,” IEEE Transactions on Automatic Control, vol. 59, no. 7, pp. 1765–1777, July 2014. [Online]. Available: https://doi.org/10.1109/tac.2014.2309031
  13. M. Knopp, C. Aykin, J. Feldmaier, and H. Shen, “Formation control using GQ(λ𝜆\lambdaitalic_λ) reinforcement learning,” in 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN).   IEEE, Aug. 2017. [Online]. Available: https://doi.org/10.1109/roman.2017.8172432
  14. P. Sadhukhan and R. R. Selmic, “Multi-agent formation control with obstacle avoidance using proximal policy optimization,” in 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC).   IEEE, Oct. 2021. [Online]. Available: https://doi.org/10.1109/smc52423.2021.9658635
  15. Y. Zhou, F. Lu, G. Pu, X. Ma, R. Sun, H.-Y. Chen, and X. Li, “Adaptive leader-follower formation control and obstacle avoidance via deep reinforcement learning,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, Nov. 2019. [Online]. Available: https://doi.org/10.1109/iros40897.2019.8967561
  16. Z. He, L. Dong, C. Sun, and J. Wang, “Reinforcement learning based multi-robot formation control under separation bearing orientation scheme,” in 2020 Chinese Automation Congress (CAC).   IEEE, Nov. 2020. [Online]. Available: https://doi.org/10.1109/cac51589.2020.9327315
  17. J. Xie, R. Zhou, Y. Liu, J. Luo, S. Xie, Y. Peng, and H. Pu, “Reinforcement-learning-based asynchronous formation control scheme for multiple unmanned surface vehicles,” Applied Sciences, vol. 11, no. 2, p. 546, Jan. 2021. [Online]. Available: https://doi.org/10.3390/app11020546
  18. K. Wu, H. Wang, M. A. Esfahani, and S. Yuan, “Bnd*-ddqn: Learn to steer autonomously through deep reinforcement learning,” IEEE Transactions on Cognitive and Developmental Systems, pp. 1–1, 2019.
  19. X. Xue, Z. Li, D. Zhang, and Y. Yan, “A deep reinforcement learning method for mobile robot collision avoidance based on double DQN,” in 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE).   IEEE, June 2019. [Online]. Available: https://doi.org/10.1109/isie.2019.8781522
  20. Z. Sui, Z. Pu, J. Yi, and X. Tan, “Path planning of multiagent constrained formation through deep reinforcement learning,” in 2018 International Joint Conference on Neural Networks (IJCNN).   IEEE, July 2018. [Online]. Available: https://doi.org/10.1109/ijcnn.2018.8489066
  21. C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3-4, pp. 279–292, May 1992. [Online]. Available: https://doi.org/10.1007/bf00992698
  22. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015. [Online]. Available: https://doi.org/10.1038/nature14236
  23. H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-learning,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1, Mar. 2016. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/10295
  24. Sphero, Inc., “Programmable Robot Ball: Sphero SPRK+ — Teach STEM with Sphero,” Accessed Feb. 23 2022 [Online]. [Online]. Available: https://sphero.com/products/sphero-sprk-plus
  25. N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source multi-robot simulator,” in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, 2004, pp. 2149–2154.
  26. M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and A. Ng, “Ros: an open-source robot operating system,” in Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop on Open Source Robotics, Kobe, Japan, may 2009.
  27. G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.
  28. A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and realtime tracking,” in 2016 IEEE International Conference on Image Processing (ICIP), 2016, pp. 3464–3468.
Citations (1)

Summary

We haven't generated a summary for this paper yet.