Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decentralized Circle Formation Control for Fish-like Robots in the Real-world via Reinforcement Learning (2103.05293v1)

Published 9 Mar 2021 in cs.RO, cs.AI, and cs.MA

Abstract: In this paper, the circle formation control problem is addressed for a group of cooperative underactuated fish-like robots involving unknown nonlinear dynamics and disturbances. Based on the reinforcement learning and cognitive consistency theory, we propose a decentralized controller without the knowledge of the dynamics of the fish-like robots. The proposed controller can be transferred from simulation to reality. It is only trained in our established simulation environment, and the trained controller can be deployed to real robots without any manual tuning. Simulation results confirm that the proposed model-free robust formation control method is scalable with respect to the group size of the robots and outperforms other representative RL algorithms. Several experiments in the real world verify the effectiveness of our RL-based approach for circle formation control.

Citations (12)

Summary

We haven't generated a summary for this paper yet.