Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparing Causal Frameworks: Potential Outcomes, Structural Models, Graphs, and Abstractions (2306.14351v2)

Published 25 Jun 2023 in stat.ME, cs.AI, cs.LG, cs.LO, and stat.ML

Abstract: The aim of this paper is to make clear and precise the relationship between the Rubin causal model (RCM) and structural causal model (SCM) frameworks for causal inference. Adopting a neutral logical perspective, and drawing on previous work, we show what is required for an RCM to be representable by an SCM. A key result then shows that every RCM -- including those that violate algebraic principles implied by the SCM framework -- emerges as an abstraction of some representable RCM. Finally, we illustrate the power of this conciliatory perspective by pinpointing an important role for SCM principles in classic applications of RCMs; conversely, we offer a characterization of the algebraic constraints implied by a graph, helping to substantiate further comparisons between the two frameworks.

Citations (6)

Summary

We haven't generated a summary for this paper yet.