Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Estimating Network Dimension When the Spectrum Struggles (2306.14266v1)

Published 25 Jun 2023 in cs.SI, cs.NA, and math.NA

Abstract: What is the dimension of a network? Here, we view it as the smallest dimension of Euclidean space into which nodes can be embedded so that pairwise distances accurately reflect the connectivity structure. We show that a recently proposed and extremely efficient algorithm for data clouds, based on computing first and second nearest neighbour distances, can be used as the basis of an approach for estimating the dimension of a network with weighted edges. We also show how the algorithm can be extended to unweighted networks when combined with spectral embedding. We illustrate the advantages of this technique over the widely-used approach of characterising dimension by visually searching for a suitable gap in the spectrum of the Laplacian.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.