Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
51 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Potential Benefits of Employing Large Language Models in Research in Moral Education and Development (2306.13805v2)

Published 23 Jun 2023 in cs.CY and cs.AI

Abstract: Recently, computer scientists have developed LLMs by training prediction models with large-scale language corpora and human reinforcements. The LLMs have become one promising way to implement artificial intelligence with accuracy in various fields. Interestingly, recent LLMs possess emergent functional features that emulate sophisticated human cognition, especially in-context learning and the chain of thought, which were unavailable in previous prediction models. In this paper, I will examine how LLMs might contribute to moral education and development research. To achieve this goal, I will review the most recently published conference papers and ArXiv preprints to overview the novel functional features implemented in LLMs. I also intend to conduct brief experiments with ChatGPT to investigate how LLMs behave while addressing ethical dilemmas and external feedback. The results suggest that LLMs might be capable of solving dilemmas based on reasoning and revising their reasoning process with external input. Furthermore, a preliminary experimental result from the moral exemplar test may demonstrate that exemplary stories can elicit moral elevation in LLMs as do they among human participants. I will discuss the potential implications of LLMs on research on moral education and development with the results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Hyemin Han (3 papers)
Citations (6)