Human Activity Behavioural Pattern Recognition in Smarthome with Long-hour Data Collection (2306.13374v2)
Abstract: The research on human activity recognition has provided novel solutions to many applications like healthcare, sports, and user profiling. Considering the complex nature of human activities, it is still challenging even after effective and efficient sensors are available. The existing works on human activity recognition using smartphone sensors focus on recognizing basic human activities like sitting, sleeping, standing, stair up and down and running. However, more than these basic activities is needed to analyze human behavioural pattern. The proposed framework recognizes basic human activities using deep learning models. Also, ambient sensors like PIR, pressure sensors, and smartphone-based sensors like accelerometers and gyroscopes are combined to make it hybrid-sensor-based human activity recognition. The hybrid approach helped derive more activities than the basic ones, which also helped derive human activity patterns or user profiling. User profiling provides sufficient information to identify daily living activity patterns and predict whether any anomaly exists. The framework provides the base for applications such as elderly monitoring when they are alone at home. The GRU model's accuracy of 95\% is observed to recognize the basic activities. Finally, Human activity patterns over time are recognized based on the duration and frequency of the activities. It is observed that human activity pattern, like, morning walking duration, varies depending on the day of the week.
- Bianchi, V., Bassoli, M., Lombardo, G., Fornacciari, P., Mordonini, M., Munari, I.D.: Iot wearable sensor and deep learning: An integrated approach for personalized human activity recognition in a smart home environment. IEEE Internet of Things Journal 6(5), 8553–8562 (2019). https://doi.org/10.1109/JIOT.2019.2920283 (3) Ranjit Kolkar, G.V.: Human activity recognition in smart home using deep learning techniques. In: 2021 13th International Conference on Information & Communication Technology and System (ICTS), pp. 230–234 (2021). IEEE (4) Qiu, H., Wang, X., Xie, F.: A survey on smart wearables in the application of fitness. In: Proc. IEEE 15th Int. Conf. Depend. Auton. Secure Comput. IEEE 15th Int. Conf. Pervasive Intell. Comput. IEEE 3rd Int. Conf. Big Data Intell. Comput., Orlando, FL, USA, pp. 303–307 (2018) (5) Zainudin, M.N.S., Sulaiman, M.N., Mustapha, N., Perumal, T.: Monitoring daily fitness activity using accelerometer sensor fusion. In: Proc. IEEE Int. Symp. Consum. Electron. (ISCE), Kuala Lumpur, Malaysia, pp. 35–36 (2017) (6) Zainudin, M.N.S., Sulaiman, M.N., Mustapha, N., Perumal, T.: Monitoring daily fitness activity using accelerometer sensor fusion, 35–36 (2017) (7) Ahmadi, A., et al.: Toward automatic activity classification and movement assessment during a sports training session. IEEE Internet Things J. 2(1), 23–32 (2015) (8) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Human activity recognition in smart home using deep learning techniques. In: 2021 13th International Conference on Information & Communication Technology and System (ICTS), pp. 230–234 (2021). IEEE (4) Qiu, H., Wang, X., Xie, F.: A survey on smart wearables in the application of fitness. In: Proc. IEEE 15th Int. Conf. Depend. Auton. Secure Comput. IEEE 15th Int. Conf. Pervasive Intell. Comput. IEEE 3rd Int. Conf. Big Data Intell. Comput., Orlando, FL, USA, pp. 303–307 (2018) (5) Zainudin, M.N.S., Sulaiman, M.N., Mustapha, N., Perumal, T.: Monitoring daily fitness activity using accelerometer sensor fusion. In: Proc. IEEE Int. Symp. Consum. Electron. (ISCE), Kuala Lumpur, Malaysia, pp. 35–36 (2017) (6) Zainudin, M.N.S., Sulaiman, M.N., Mustapha, N., Perumal, T.: Monitoring daily fitness activity using accelerometer sensor fusion, 35–36 (2017) (7) Ahmadi, A., et al.: Toward automatic activity classification and movement assessment during a sports training session. IEEE Internet Things J. 2(1), 23–32 (2015) (8) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Qiu, H., Wang, X., Xie, F.: A survey on smart wearables in the application of fitness. In: Proc. IEEE 15th Int. Conf. Depend. Auton. Secure Comput. IEEE 15th Int. Conf. Pervasive Intell. Comput. IEEE 3rd Int. Conf. Big Data Intell. Comput., Orlando, FL, USA, pp. 303–307 (2018) (5) Zainudin, M.N.S., Sulaiman, M.N., Mustapha, N., Perumal, T.: Monitoring daily fitness activity using accelerometer sensor fusion. In: Proc. IEEE Int. Symp. Consum. Electron. (ISCE), Kuala Lumpur, Malaysia, pp. 35–36 (2017) (6) Zainudin, M.N.S., Sulaiman, M.N., Mustapha, N., Perumal, T.: Monitoring daily fitness activity using accelerometer sensor fusion, 35–36 (2017) (7) Ahmadi, A., et al.: Toward automatic activity classification and movement assessment during a sports training session. IEEE Internet Things J. 2(1), 23–32 (2015) (8) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Zainudin, M.N.S., Sulaiman, M.N., Mustapha, N., Perumal, T.: Monitoring daily fitness activity using accelerometer sensor fusion. In: Proc. IEEE Int. Symp. Consum. Electron. (ISCE), Kuala Lumpur, Malaysia, pp. 35–36 (2017) (6) Zainudin, M.N.S., Sulaiman, M.N., Mustapha, N., Perumal, T.: Monitoring daily fitness activity using accelerometer sensor fusion, 35–36 (2017) (7) Ahmadi, A., et al.: Toward automatic activity classification and movement assessment during a sports training session. IEEE Internet Things J. 2(1), 23–32 (2015) (8) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Zainudin, M.N.S., Sulaiman, M.N., Mustapha, N., Perumal, T.: Monitoring daily fitness activity using accelerometer sensor fusion, 35–36 (2017) (7) Ahmadi, A., et al.: Toward automatic activity classification and movement assessment during a sports training session. IEEE Internet Things J. 2(1), 23–32 (2015) (8) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ahmadi, A., et al.: Toward automatic activity classification and movement assessment during a sports training session. IEEE Internet Things J. 2(1), 23–32 (2015) (8) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Ranjit Kolkar, G.V.: Human activity recognition in smart home using deep learning techniques. In: 2021 13th International Conference on Information & Communication Technology and System (ICTS), pp. 230–234 (2021). IEEE (4) Qiu, H., Wang, X., Xie, F.: A survey on smart wearables in the application of fitness. In: Proc. IEEE 15th Int. Conf. Depend. Auton. Secure Comput. IEEE 15th Int. Conf. Pervasive Intell. Comput. IEEE 3rd Int. Conf. Big Data Intell. Comput., Orlando, FL, USA, pp. 303–307 (2018) (5) Zainudin, M.N.S., Sulaiman, M.N., Mustapha, N., Perumal, T.: Monitoring daily fitness activity using accelerometer sensor fusion. In: Proc. IEEE Int. Symp. Consum. Electron. (ISCE), Kuala Lumpur, Malaysia, pp. 35–36 (2017) (6) Zainudin, M.N.S., Sulaiman, M.N., Mustapha, N., Perumal, T.: Monitoring daily fitness activity using accelerometer sensor fusion, 35–36 (2017) (7) Ahmadi, A., et al.: Toward automatic activity classification and movement assessment during a sports training session. IEEE Internet Things J. 2(1), 23–32 (2015) (8) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Qiu, H., Wang, X., Xie, F.: A survey on smart wearables in the application of fitness. In: Proc. IEEE 15th Int. Conf. Depend. Auton. Secure Comput. IEEE 15th Int. Conf. Pervasive Intell. Comput. IEEE 3rd Int. Conf. Big Data Intell. Comput., Orlando, FL, USA, pp. 303–307 (2018) (5) Zainudin, M.N.S., Sulaiman, M.N., Mustapha, N., Perumal, T.: Monitoring daily fitness activity using accelerometer sensor fusion. In: Proc. IEEE Int. Symp. Consum. Electron. (ISCE), Kuala Lumpur, Malaysia, pp. 35–36 (2017) (6) Zainudin, M.N.S., Sulaiman, M.N., Mustapha, N., Perumal, T.: Monitoring daily fitness activity using accelerometer sensor fusion, 35–36 (2017) (7) Ahmadi, A., et al.: Toward automatic activity classification and movement assessment during a sports training session. IEEE Internet Things J. 2(1), 23–32 (2015) (8) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Zainudin, M.N.S., Sulaiman, M.N., Mustapha, N., Perumal, T.: Monitoring daily fitness activity using accelerometer sensor fusion. In: Proc. IEEE Int. Symp. Consum. Electron. (ISCE), Kuala Lumpur, Malaysia, pp. 35–36 (2017) (6) Zainudin, M.N.S., Sulaiman, M.N., Mustapha, N., Perumal, T.: Monitoring daily fitness activity using accelerometer sensor fusion, 35–36 (2017) (7) Ahmadi, A., et al.: Toward automatic activity classification and movement assessment during a sports training session. IEEE Internet Things J. 2(1), 23–32 (2015) (8) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Zainudin, M.N.S., Sulaiman, M.N., Mustapha, N., Perumal, T.: Monitoring daily fitness activity using accelerometer sensor fusion, 35–36 (2017) (7) Ahmadi, A., et al.: Toward automatic activity classification and movement assessment during a sports training session. IEEE Internet Things J. 2(1), 23–32 (2015) (8) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ahmadi, A., et al.: Toward automatic activity classification and movement assessment during a sports training session. IEEE Internet Things J. 2(1), 23–32 (2015) (8) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Qiu, H., Wang, X., Xie, F.: A survey on smart wearables in the application of fitness. In: Proc. IEEE 15th Int. Conf. Depend. Auton. Secure Comput. IEEE 15th Int. Conf. Pervasive Intell. Comput. IEEE 3rd Int. Conf. Big Data Intell. Comput., Orlando, FL, USA, pp. 303–307 (2018) (5) Zainudin, M.N.S., Sulaiman, M.N., Mustapha, N., Perumal, T.: Monitoring daily fitness activity using accelerometer sensor fusion. In: Proc. IEEE Int. Symp. Consum. Electron. (ISCE), Kuala Lumpur, Malaysia, pp. 35–36 (2017) (6) Zainudin, M.N.S., Sulaiman, M.N., Mustapha, N., Perumal, T.: Monitoring daily fitness activity using accelerometer sensor fusion, 35–36 (2017) (7) Ahmadi, A., et al.: Toward automatic activity classification and movement assessment during a sports training session. IEEE Internet Things J. 2(1), 23–32 (2015) (8) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Zainudin, M.N.S., Sulaiman, M.N., Mustapha, N., Perumal, T.: Monitoring daily fitness activity using accelerometer sensor fusion. In: Proc. IEEE Int. Symp. Consum. Electron. (ISCE), Kuala Lumpur, Malaysia, pp. 35–36 (2017) (6) Zainudin, M.N.S., Sulaiman, M.N., Mustapha, N., Perumal, T.: Monitoring daily fitness activity using accelerometer sensor fusion, 35–36 (2017) (7) Ahmadi, A., et al.: Toward automatic activity classification and movement assessment during a sports training session. IEEE Internet Things J. 2(1), 23–32 (2015) (8) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Zainudin, M.N.S., Sulaiman, M.N., Mustapha, N., Perumal, T.: Monitoring daily fitness activity using accelerometer sensor fusion, 35–36 (2017) (7) Ahmadi, A., et al.: Toward automatic activity classification and movement assessment during a sports training session. IEEE Internet Things J. 2(1), 23–32 (2015) (8) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ahmadi, A., et al.: Toward automatic activity classification and movement assessment during a sports training session. IEEE Internet Things J. 2(1), 23–32 (2015) (8) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Zainudin, M.N.S., Sulaiman, M.N., Mustapha, N., Perumal, T.: Monitoring daily fitness activity using accelerometer sensor fusion. In: Proc. IEEE Int. Symp. Consum. Electron. (ISCE), Kuala Lumpur, Malaysia, pp. 35–36 (2017) (6) Zainudin, M.N.S., Sulaiman, M.N., Mustapha, N., Perumal, T.: Monitoring daily fitness activity using accelerometer sensor fusion, 35–36 (2017) (7) Ahmadi, A., et al.: Toward automatic activity classification and movement assessment during a sports training session. IEEE Internet Things J. 2(1), 23–32 (2015) (8) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Zainudin, M.N.S., Sulaiman, M.N., Mustapha, N., Perumal, T.: Monitoring daily fitness activity using accelerometer sensor fusion, 35–36 (2017) (7) Ahmadi, A., et al.: Toward automatic activity classification and movement assessment during a sports training session. IEEE Internet Things J. 2(1), 23–32 (2015) (8) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ahmadi, A., et al.: Toward automatic activity classification and movement assessment during a sports training session. IEEE Internet Things J. 2(1), 23–32 (2015) (8) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Zainudin, M.N.S., Sulaiman, M.N., Mustapha, N., Perumal, T.: Monitoring daily fitness activity using accelerometer sensor fusion, 35–36 (2017) (7) Ahmadi, A., et al.: Toward automatic activity classification and movement assessment during a sports training session. IEEE Internet Things J. 2(1), 23–32 (2015) (8) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ahmadi, A., et al.: Toward automatic activity classification and movement assessment during a sports training session. IEEE Internet Things J. 2(1), 23–32 (2015) (8) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Ahmadi, A., et al.: Toward automatic activity classification and movement assessment during a sports training session. IEEE Internet Things J. 2(1), 23–32 (2015) (8) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Mora, N., Bianchi, V., Munari, I.D., Ciampolini, P.: A bci platform supporting aal applications. In: Stephanidis, C., Antona, M. (eds.) Universal Access in Human-Computer Interaction. Design and Development Methods for Universal Access. UAHCI 2014 (LNCS 8513). Springer, Cham, Switzerland (2014) (9) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Ancans, A., Rozentals, A., Nesenbergs, K., Greitans, M.: Inertial sensors and muscle electrical signals in human-computer interaction, 1–6 (2017) (10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Qiu, S., Wang, Z., Zhao, H., Liu, L., Jiang, Y.: Using body-worn sensors for preliminary rehabilitation assessment in stroke victims with gait impairment. IEEE Access 6, 31249–31258 (2018) (11) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Bisio, I., Delfino, A., Lavagetto, F., Sciarrone, A.: Enabling iot for in-home rehabilitation: Accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017) (12) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Rabbi, J., Fuad, M., Hasan, T., Awal, M.: Human activity analysis and recognition from smartphones using machine learning techniques. arXiv preprint arXiv:2103.16490 (2021) (13) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Weiss, G.M.: Wisdm smartphone and smartwatch activity and biometrics dataset. UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set 7, 133190–133202 (2019) (14) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Ranjit Kolkar, G.V.: Issues and challenges in various sensor-based modalities in human activity recognition system. In: Applications of Advanced Computing in Systems: Proceedings of International Conference on Advances in Systems, Control and Computing, pp. 171–179 (2021). Springer (15) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Trung, T.Q., Lee, N.E.: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Advanced materials 28(22), 4338–4372 (2016) (16) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC (2010) (17) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013) (18) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity monitoring. In: The 16th IEEE International Symposium on Wearable Computers (ISWC) (2012) (19) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: A review. IEEE Sensors Journal 21(12), 13029–13040 (2021) (20) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Lee, M.L., Dey, A.K.: Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing 19, 27–43 (2015) (21) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a support vector machine (svm) classifier. In: 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), pp. 66–67 (2015). IEEE (22) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15(12), 31314–31338 (2015) (23) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Kumar, P., Chauhan, S.: Human activity recognition with deep learning: Overview, challenges possibilities. CCF Transactions on Pervasive Computing and Interaction 339(3), 1–29 (2021) (24) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Ranjit Kolkar, G.V.: Human activity recognition using deep learning techniques with spider monkey optimization. Multimedia Tools and Applications, 1–18 (2023) (25) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Hailemariam, E.e.a.: Proceedings of the 2011 symposium on simulation for architecture and urban design. In: Society for Computer Simulation International (2011) (26) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013, Bruges, Belgium (2013). 24-26 (27) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Tröster, G., del R. Millán, J., Roggen, D.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters (2013) (28) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- CASAS Dataset. http://casas.wsu.edu/datasets/ (2020) (29) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Biel, J., Gatica-Perez, D., Prendinger, H.: The ExtraSensory dataset: a benchmark for continuous contextual sensing. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 415–418 (2015). https://doi.org/10.1145/2800835.2804332 (30) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Sucar, L.E., Morales, E.F.: Sisfall: A fall and movement dataset. Sensors 16(8), 1344 (2016). https://doi.org/10.3390/s16081344 (31) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10) Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Altun, K., Barshan, B., Tunçel, O.: Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43(10)
- Ranjit Kolkar (1 paper)
- Geetha V (1 paper)