The Dilaton Improves Goldstones (2306.12914v2)
Abstract: The free scalar field is only conformally invariant when non-minimally coupled to gravity. In flat space this amounts to amending, or improving, the energy momentum tensor. A no-go theorem prohibits the improvement for Goldstone bosons, originating from global internal spontaneous symmetry breaking. It is shown that the no-go theorem can be circumvented in the presence of a dilaton. The latter is a (pseudo) Goldstone boson originating from spontaneous conformal symmetry breaking in a theory with an infrared fixed point. Specifically, the tracelessness of the energy momentum tensor is demonstrated for a generic $d$-dimensional curved space. Additionally, the Goldstone gravitational form factors are shown to obey conformality constraints in the soft limit. The crucial point is that the remainder term of the soft theorem is non-zero due to the presence of the dilaton pole. For Goldstone systems with a trivial infrared fixed point the leading order analysis of this paper ought to be sufficient. Loop effects govern the improvement term outside the fixed point and are scheme-dependent as briefly discussed towards the end of the paper.
- C. G. Callan, Jr., S. R. Coleman, and R. Jackiw, “A New improved energy - momentum tensor,” Annals Phys. 59 (1970) 42–73.
- B. S. DeWitt, “Quantum Field Theory in Curved Space-Time,” Phys. Rept. 19 (1975) 295–357.
- N. A. Chernikov and E. A. Tagirov, “Quantum theory of scalar fields in de Sitter space-time,” Ann. Inst. H. Poincare Phys. Theor. A 9 (1968) 109.
- M. B. Voloshin and A. D. Dolgov, “ON GRAVITATIONAL INTERACTION OF THE GOLDSTONE BOSONS,” Sov. J. Nucl. Phys. 35 (1982) 120–121.
- H. Leutwyler and M. A. Shifman, “GOLDSTONE BOSONS GENERATE PECULIAR CONFORMAL ANOMALIES,” Phys. Lett. B 221 (1989) 384–388.
- J. F. Donoghue and H. Leutwyler, “Energy and momentum in chiral theories,” Z. Phys. C 52 (1991) 343–351.
- R. P. Feynman, Feynman lectures on gravitation. 1996.
- R. J. Riegert, “A Nonlocal Action for the Trace Anomaly,” Phys. Lett. B 134 (1984) 56–60.
- C. M. Bender and P. D. Mannheim, “No-ghost theorem for the fourth-order derivative Pais-Uhlenbeck oscillator model,” Phys. Rev. Lett. 100 (2008) 110402, arXiv:0706.0207 [hep-th].
- L. Boyle and N. Turok, “Cancelling the vacuum energy and Weyl anomaly in the standard model with dimension-zero scalar fields,” arXiv:2110.06258 [hep-th].
- N. Turok and L. Boyle, “Gravitational entropy and the flatness, homogeneity and isotropy puzzles,” arXiv:2201.07279 [hep-th].
- Graduate Texts in Contemporary Physics. Springer-Verlag, New York, 1997.
- R. Penrose, “Relativité, Groupes et Topologie: Proceedings, Ecole d’été de Physique Théorique, Session XIII, Les Houches, France, Jul 1 - Aug 24, 1963,” Gordon and Breach, New York, 1964.
- A. A. Grib and E. A. Poberii, “On the difference between conformal and minimal couplings in general relativity,” Helv. Phys. Acta 68 (1995) 380–395.
- CUP, 2014.
- 2012.
- V. Prochazka and R. Zwicky, “Finiteness of two- and three-point functions and the renormalization group,” Phys. Rev. D 95 no. 6, (2017) 065027, arXiv:1611.01367 [hep-th].
- V. Prochazka and R. Zwicky, “On the Flow of □R□𝑅\Box R□ italic_R Weyl-Anomaly,” Phys. Rev. D 96 no. 4, (2017) 045011, arXiv:1703.01239 [hep-th].
- J. L. Cardy, “Is There a c Theorem in Four-Dimensions?,” Phys. Lett. B 215 (1988) 749–752.
- I. Jack and H. Osborn, “Analogs for the c𝑐citalic_c Theorem for Four-dimensional Renormalizable Field Theories,” Nucl. Phys. B 343 (1990) 647–688.
- Z. Komargodski and A. Schwimmer, “On Renormalization Group Flows in Four Dimensions,” JHEP 12 (2011) 099, arXiv:1107.3987 [hep-th].
- M. A. Luty, J. Polchinski, and R. Rattazzi, “The a𝑎aitalic_a-theorem and the Asymptotics of 4D Quantum Field Theory,” JHEP 01 (2013) 152, arXiv:1204.5221 [hep-th].
- G. M. Shore, The c and a-theorems and the Local Renormalisation Group. SpringerBriefs in Physics. Springer, Cham, 2017. arXiv:1601.06662 [hep-th].
- S. Coleman, Aspects of Symmetry: Selected Erice Lectures. Cambridge University Press, Cambridge, U.K., 1985.
- R. Zwicky, “QCD with an Infrared Fixed Point – Pion Sector,” arXiv:2306.06752 [hep-ph].
- L. Del Debbio and R. Zwicky, “Dilaton and massive hadrons in a conformal phase,” JHEP 08 (2022) 007, arXiv:2112.11363 [hep-ph].
- R. J. Crewther and L. C. Tunstall, “Origin of ΔI=1/2Δ𝐼12\Delta I=1/2roman_Δ italic_I = 1 / 2 Rule for Kaon Decays: QCD Infrared Fixed Point,” arXiv:1203.1321 [hep-ph].
- R. J. Crewther and L. C. Tunstall, “Status of Chiral-Scale Perturbation Theory,” PoS CD15 (2015) 132, arXiv:1510.01322 [hep-ph].
- G. W. Semenoff, “Dilaton in a cold Fermi gas,” in 7th International Conference on New Frontiers in Physics. 8, 2018. arXiv:1808.03861 [cond-mat.quant-gas].
- W. A. Bardeen, M. Moshe, and M. Bander, “Spontaneous Breaking of Scale Invariance and the Ultraviolet Fixed Point in O(N𝑁Nitalic_N) Symmetric (ϕ¯36(\bar{\phi}^{6}_{3}( over¯ start_ARG italic_ϕ end_ARG start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT in Three-Dimensions) Theory,” Phys. Rev. Lett. 52 (1984) 1188.
- R. Zwicky, to appear.
- J. R. Ellis, “Aspects of conformal symmetry and chirality,” Nucl. Phys. B 22 (1970) 478–492. [Erratum: Nucl.Phys.B 25, 639–639 (1971)].
- S. Matsuzaki and K. Yamawaki, “Dilaton Chiral Perturbation Theory: Determining the Mass and Decay Constant of the Technidilaton on the Lattice,” Phys. Rev. Lett. 113 no. 8, (2014) 082002, arXiv:1311.3784 [hep-lat].
- G. K. Karananas and A. Monin, “Weyl vs. Conformal,” Phys. Lett. B 757 (2016) 257–260, arXiv:1510.08042 [hep-th].
- J. Goldstone, A. Salam, and S. Weinberg, “Broken Symmetries,” Phys. Rev. 127 (1962) 965–970.
- S. R. Coleman, “There are no Goldstone bosons in two-dimensions,” Commun. Math. Phys. 31 (1973) 259–264.
- N. D. Mermin and H. Wagner, “Absence of ferromagnetism or antiferromagnetism in one-dimensional or two-dimensional isotropic Heisenberg models,” Phys. Rev. Lett. 17 (1966) 1133–1136.
- Y. Nakayama, “Scale invariance vs conformal invariance,” Phys. Rept. 569 (2015) 1–93, arXiv:1302.0884 [hep-th].
- J.-F. Fortin, B. Grinstein, and A. Stergiou, “Limit Cycles and Conformal Invariance,” JHEP 01 (2013) 184, arXiv:1208.3674 [hep-th].
- A. Bzowski and K. Skenderis, “Comments on scale and conformal invariance,” JHEP 08 (2014) 027, arXiv:1402.3208 [hep-th].
- A. Dymarsky, K. Farnsworth, Z. Komargodski, M. A. Luty, and V. Prilepina, “Scale Invariance, Conformality, and Generalized Free Fields,” JHEP 02 (2016) 099, arXiv:1402.6322 [hep-th].
- A. Dymarsky and A. Zhiboedov, “Scale-invariant breaking of conformal symmetry,” J. Phys. A 48 no. 41, (2015) 41FT01, arXiv:1505.01152 [hep-th].
- D. Z. Freedman and E. J. Weinberg, “The Energy-Momentum Tensor in Scalar and Gauge Field Theories,” Annals Phys. 87 (1974) 354.
- J. C. Collins, “A Finite Improvement Renormalizes the Energy-Momentum Tensor,” Phys. Rev. Lett. 36 (1976) 1518.
- L. S. Brown and J. C. Collins, “Dimensional Renormalization of Scalar Field Theory in Curved Space-time,” Annals Phys. 130 (1980) 215.
- T. Muta and S. D. Odintsov, “Model dependence of the nonminimal scalar graviton effective coupling constant in curved space-time,” Mod. Phys. Lett. A 6 (1991) 3641–3646.
- 1992.
- W. H. Freeman, San Francisco, 1973.
- Y. Hosotani, M. Nikolic, and S. Rudaz, “PSEUDOGOLDSTONE BOSONS IN CURVED SPACE-TIME,” Phys. Rev. D 34 (1986) 627.
- A. J. Paterson, “Coleman-Weinberg Symmetry Breaking in the Chiral SU(N𝑁Nitalic_N) X SU(N𝑁Nitalic_N) Linear Sigma Model,” Nucl. Phys. B 190 (1981) 188–204.
- D. Ghilencea and C. T. Hill, “Renormalization Group for Non-minimal ϕ2Rsuperscriptitalic-ϕ2𝑅\phi^{2}Ritalic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_R Couplings and Gravitational Contact Interactions,” arXiv:2210.15640 [gr-qc].
- G. ’t Hooft, “The Conformal Constraint in Canonical Quantum Gravity,” arXiv:1011.0061 [gr-qc].
- D. S. Salopek, J. R. Bond, and J. M. Bardeen, “Designing Density Fluctuation Spectra in Inflation,” Phys. Rev. D 40 (1989) 1753.
- J. L. F. Barbon and J. R. Espinosa, “On the Naturalness of Higgs Inflation,” Phys. Rev. D 79 (2009) 081302, arXiv:0903.0355 [hep-ph].
- G. F. Giudice and H. M. Lee, “Unitarizing Higgs Inflation,” Phys. Lett. B 694 (2011) 294–300, arXiv:1010.1417 [hep-ph].
- J. L. F. Barbon, J. A. Casas, J. Elias-Miro, and J. R. Espinosa, “Higgs Inflation as a Mirage,” JHEP 09 (2015) 027, arXiv:1501.02231 [hep-ph].
- G. K. Karananas, M. Shaposhnikov, and S. Zell, “Field redefinitions, perturbative unitarity and Higgs inflation,” JHEP 06 (2022) 132, arXiv:2203.09534 [hep-ph].
- Y. Ema, K. Mukaida, and J. van de Vis, “Higgs inflation as nonlinear sigma model and scalaron as its σ𝜎\sigmaitalic_σ-meson,” JHEP 11 (2020) 011, arXiv:2002.11739 [hep-ph].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.