Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MySemCloud: Semantic-aware Word Cloud Editing (2306.12759v1)

Published 22 Jun 2023 in cs.HC and cs.GR

Abstract: Word clouds are a popular text visualization technique that summarize an input text by displaying its most important words in a compact image. The traditional layout methods do not take proximity effects between words into account; this has been improved in semantic word clouds, where relative word placement is controlled by edges in a word similarity graph. We introduce MySemCloud, a new human-in-the-loop tool to visualize and edit semantic word clouds. MySemCloud lets users perform computer-assisted local moves of words, which improve or at least retain the semantic quality. To achieve this, we construct a word similarity graph on which a system of forces is applied to generate a compact initial layout with good semantic quality. The force system also allows us to maintain these attributes after each user interaction, as well as preserve the user's mental map. The tool provides algorithmic support for the editing operations to help the user enhance the semantic quality of the visualization, while adjusting it to their personal preference. We show that MySemCloud provides high user satisfaction as well as permits users to create layouts of higher quality than state-of-the-art semantic word cloud generation tools.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. European union, 2022. https://en.wikipedia.org/wiki/European_Union.
  2. Semantic word cloud representations: Hardness and approximation algorithms. In A. Pardo and A. Viola, eds., Theoretical Informatics (LATIN’14), vol. 8392 of Lecture Notes in Computer Science, pp. 514–525. Springer, 2014. doi: 10 . 1007/978-3-642-54423-1_45
  3. Experimental comparison of semantic word clouds. In J. Gudmundsson and J. Katajainen, eds., Experimental Algorithms (SEA’14), vol. 8504 of Lecture Notes in Computer Science, pp. 247–258. Springer, 2014. doi: 10 . 1007/978-3-319-07959-2_21
  4. Improved approximation algorithms for box contact representations. Algorithmica, 77(3):902–920, 2017. doi: 10 . 1007/s00453-016-0121-3
  5. Worbel: Aggregating point labels into word clouds. In X. Meng, F. Wang, C. Lu, Y. Huang, S. Shekhar, and X. Xie, eds., Advances in Geographic Information Systems (SIGSPATIAL’21), pp. 256–267. ACM, 2021. doi: 10 . 1145/3474717 . 3483959
  6. Fully dynamic semantic word clouds. In N. G. Bourbakis, G. A. Tsihrintzis, M. Virvou, and D. Kavraki, eds., 7th International Conference on Information, Intelligence, Systems & Applications, IISA 2016, Chalkidiki, Greece, July 13-15, 2016, pp. 1–6. IEEE, 2016. doi: 10 . 1109/IISA . 2016 . 7785428
  7. M. Bostock. D3 data-driven documents. https://d3js.org/.
  8. Geo word clouds. In C. Hansen, I. Viola, and X. Yuan, eds., Pacific Visualization Symposium (PacificVis’16), pp. 144–151. IEEE, 2016. doi: 10 . 1109/PACIFICVIS . 2016 . 7465262
  9. Rectangular layouts and contact graphs. ACM Trans. Algorithms, 4(1):8:1–8:28, 2008. doi: 10 . 1145/1328911 . 1328919
  10. Node overlap removal algorithms: an extended comparative study. J. Graph Algorithms Appl., 24(4):683–706, 2020. doi: 10 . 7155/jgaa . 00532
  11. Context-preserving, dynamic word cloud visualization. IEEE Computer Graphics and Applications, 30(6):42–53, 2010. doi: 10 . 1109/MCG . 2010 . 102
  12. J. Feinberg, 2009. https://www.wordle.net/.
  13. Graph drawing by stress majorization. In J. Pach, ed., Graph Drawing (GD’04), vol. 3383 of Lecture Notes in Computer Science, pp. 239–250. Springer, 2004. doi: 10 . 1007/978-3-540-31843-9_25
  14. An evaluation of semantically grouped word cloud designs. IEEE Trans. Vis. Comput. Graph., 26(9):2748–2761, 2020. doi: 10 . 1109/TVCG . 2019 . 2904683
  15. A new algorithm for removing node overlapping in graph visualization. Inf. Sci., 177(14):2821–2844, 2007. doi: 10 . 1016/j . ins . 2007 . 02 . 016
  16. Wordleplus: Expanding wordle’s use through natural interaction and animation. IEEE Computer Graphics and Applications, 35(6):20–28, 2015. doi: 10 . 1109/MCG . 2015 . 113
  17. Maniwordle: Providing flexible control over wordle. IEEE Trans. Vis. Comput. Graph., 16(6):1190–1197, 2010. doi: 10 . 1109/TVCG . 2010 . 175
  18. Metro-wordle: An interactive visualization for urban text distributions based on wordle. Vis. Informatics, 2(1):50–59, 2018. doi: 10 . 1016/j . visinf . 2018 . 04 . 006
  19. A. Mohanda. Harry potter and the philosopher’s stone summary. https://bookanalysis.com/jk-rowling/harry-potter-and-the-philosophers-stone/summary/.
  20. Semantic word clouds with background corpus normalization and t-distributed stochastic neighbor embedding. CoRR, abs/1708.03569, 2017.
  21. J. Schwenkler. Portrait of the candidate as a pile of words, 2008. http://archive.boston.com/bostonglobe/ideas/articles/2008/08/03/portrait_of_the_candidate_as_a_pile_of_words/.
  22. On the beauty and usability of tag clouds. In Information Visualisation (IV’08), pp. 17–25. IEEE Computer Society, 2008. doi: 10 . 1109/IV . 2008 . 89
  23. Natural, 2011. https://www.npmjs.com/package/natural.
  24. F. B. Viégas and M. Wattenberg. Timelines - tag clouds and the case for vernacular visualization. Interactions, 15(4):49–52, 2008. doi: 10 . 1145/1374489 . 1374501
  25. Participatory visualization with wordle. IEEE Trans. Vis. Comput. Graph., 15(6):1137–1144, 2009. doi: 10 . 1109/TVCG . 2009 . 171
  26. Edwordle: Consistency-preserving word cloud editing. IEEE Trans. Vis. Comput. Graph., 24(1):647–656, 2018. doi: 10 . 1109/TVCG . 2017 . 2745859
  27. Shapewordle: Tailoring wordles using shape-aware archimedean spirals. IEEE Trans. Vis. Comput. Graph., 26(1):991–1000, 2020. doi: 10 . 1109/TVCG . 2019 . 2934783
  28. Semantic-preserving word clouds by seam carving. Comput. Graph. Forum, 30(3):741–750, 2011. doi: 10 . 1111/j . 1467-8659 . 2011 . 01923 . x
  29. Semantic word cloud generation based on word embeddings. In C. Hansen, I. Viola, and X. Yuan, eds., Pacific Visualization (PacificVis’16), pp. 239–243. IEEE Computer Society, 2016. doi: 10 . 1109/PACIFICVIS . 2016 . 7465278
Citations (1)

Summary

We haven't generated a summary for this paper yet.