Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decoding the Text Encoding (1412.6079v1)

Published 16 Dec 2014 in cs.HC

Abstract: Word clouds and text visualization is one of the recent most popular and widely used types of visualizations. Despite the attractiveness and simplicity of producing word clouds, they do not provide a thorough visualization for the distribution of the underlying data. Therefore, it is important to redesign word clouds for improving their design choices and to be able to do further statistical analysis on data. In this paper we have proposed a fully automatic redesigning algorithm for word cloud visualization. Our proposed method is able to decode an input word cloud visualization and provides the raw data in the form of a list of (word, value) pairs. To the best of our knowledge our work is the first attempt to extract raw data from word cloud visualization. We have tested our proposed method both qualitatively and quantitatively. The results of our experiments show that our algorithm is able to extract the words and their weights effectively with considerable low error rate.

Summary

We haven't generated a summary for this paper yet.