Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Total light bending in non-asymptotically flat black hole spacetimes (2306.12488v2)

Published 21 Jun 2023 in gr-qc, astro-ph.GA, and physics.optics

Abstract: The gravitational deflection of light is a critical test of modified theories of gravity. A few years ago, Gibbons and Werner introduced a definition of the deflection angle based on the Gauss-Bonnet theorem. In more recent years, Arakida proposed a related idea for defining the deflection angle in non-asymptotically flat spacetimes. We revisit this idea and use it to compute the angular difference in the Kottler geometry and a non-asymptotically flat solution in Horndeski gravity. Our analytic and numerical calculations show that a triangular array of laser beams can be designed so that the proposed definition of the deflection angle is sensitive to different sources of curvature. Moreover, we find that near the photon sphere, the deflection angle in the Horndeski solution is similar to its Schwarzschild counterpart, and we confirm that the shadows seen by a static observer are identical.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (97)
  1. M. S. Zubairy. A Very Brief History of Light. In M. D. Al-Amri, M. El-Gomati, and M. S. Zubairy, editors, Optics in Our Time, pages 3–24. Springer International Publishing, Cham, 2016.
  2. IX. A determination of the deflection of light by the sun’s gravitational field, from observations made at the total eclipse of May 29, 1919. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 220(571-581):291–333, 1920.
  3. J. Earman and C. Glymour. Relativity and Eclipses: The British Eclipse Expeditions of 1919 and Their Predecessors. Historical Studies in the Physical Sciences, 11(1):49–85, 01 1980.
  4. R. S. Ellis. Gravitational lensing: a unique probe of dark matter and dark energy. Philos. Trans. A Math. Phys. Eng. Sci., 368:967–987, 2010.
  5. Measurement of the Solar Gravitational Deflection of Radio Waves using Geodetic Very-Long-Baseline Interferometry Data, 1979-1999. Phys. Rev. Lett., 92:121101, 2004.
  6. F. Schmidt. Weak Lensing Probes of Modified Gravity. Phys. Rev. D, 78:043002, 2008.
  7. J. P. Uzan. Tests of General Relativity on Astrophysical Scales. Gen. Rel. Grav., 42:2219–2246, 2010.
  8. 3D Weak Lensing: Modified Theories of Gravity. Phys. Rev. D, 93(10):103524, 2016.
  9. T. Baker et al. Novel Probes Project: Tests of gravity on astrophysical scales. Rev. Mod. Phys., 93(1):015003, 2021.
  10. K. Akiyama et al. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett., 875(1):L6, 2019.
  11. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. The Astrophysical Journal Letters, 930(L12), 2022.
  12. Lensing and dynamics of ultracompact bosonic stars. Phys. Rev. D, 96(10):104040, 2017.
  13. S. L. Liebling and C. Palenzuela. Dynamical boson stars. Living Rev. Rel., 26(1):1, 2023.
  14. ℓℓ\ellroman_ℓ-Boson stars. Class. Quant. Grav., 35(19):19LT01, 2018.
  15. Extreme ℓℓ\ellroman_ℓ-boson stars. Class. Quant. Grav., 39(9):094001, 2022.
  16. Boson stars and their relatives in semiclassical gravity. Phys. Rev. D, 107(4):045017, 2023.
  17. Radial linear stability of nonrelativistic ℓℓ\ellroman_ℓ-boson stars. Phys. Rev. D, 107(8):084001, 2023.
  18. Horndeski stars. JCAP, 10:022, 2021.
  19. Horndeski fermion–boson stars. Class. Quant. Grav., 39(4):044001, 2022.
  20. V. Cardoso and P. Pani. Testing the nature of dark compact objects: a status report. Living Rev. Rel., 22(1):4, 07 2019.
  21. Gravitation. W. H. Freeman, San Francisco, 1973.
  22. S. Weinberg. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. John Wiley and Sons, New York, 1972.
  23. V. Perlick. Gravitational Lensing from a Spacetime Perspective. Living Rev. Rel., 7(9):1433–8351, 12 2004. Updated version: arXiv:1010.3416.
  24. C. Darwin. The Gravity Field of a Particle. Proceedings of the Royal Society of London Series A, 249(1257):180–194, January 1959.
  25. The Optical Appearance of a Star Orbiting an Extreme Kerr Black Hole. Astrophys. J., 173:L137, May 1972.
  26. J. P. Luminet. Image of a spherical black hole with thin accretion disk. Astron. Astrophys., 75:228–235, 1979.
  27. Analytic Kerr black hole lensing for equatorial observers in the strong deflection limit. Phys. Rev. D, 72:083003, 2005.
  28. Lensing by Kerr Black Holes. I: General Lens Equation and Magnification Formula. J. Math. Phys., 52:092502, 2011.
  29. S. Ghosh and A. Bhattacharyya. Analytical study of gravitational lensing in Kerr-Newman black-bounce spacetime. JCAP, 11:006, 2022.
  30. Strong field limit of black hole gravitational lensing. Gen. Rel. Grav., 33:1535–1548, 2001.
  31. V. Bozza. Gravitational lensing in the strong field limit. Phys. Rev. D, 66:103001, 2002.
  32. Role of the scalar field in gravitational lensing. Astron. Astrophys., 337:1–8, 1998.
  33. Modified gravity black hole lensing observables in weak and strong field of gravity. Mon. Not. Roy. Astron. Soc., 483(3):3754–3761, 2019.
  34. Strong gravitational lensing by DHOST black holes. Class. Quant. Grav., 38(7):075026, 2021.
  35. F. Kottler. Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie. Annalen der Physik, 361(14):401–462, 1918.
  36. H. Weyl. Über die statischen kugelsymmetrischen Lösungen von Einsteins “kosmologischen” Gravitationsgleichungen. Phys. Z, 20(31-34):65, 1919.
  37. J. N. Islam. The cosmological constant and classical tests of general relativity. Phys. Lett. A, 97:239–241, 1983.
  38. W. Rindler and M. Ishak. Contribution of the cosmological constant to the relativistic bending of light revisited. Phys. Rev. D, 76:043006, 2007.
  39. Light bending in the galactic halo by Rindler-Ishak method. JCAP, 09:004, 2010.
  40. The Vacuole Model: New Terms in the Second Order Deflection of Light. JCAP, 02:028, 2011.
  41. Light bending by the cosmological constant. JCAP, 02(02):009, 2022.
  42. P. Bessa and O. F. Piattella. Gravitational lensing in a universe with matter and a cosmological constant. Phys. Rev. D, 106(12):123513, 2022.
  43. K. Lake. Bending of light and the cosmological constant. Phys. Rev. D, 65:087301, 2002.
  44. Applications of the Gauss-Bonnet theorem to gravitational lensing. Class. Quant. Grav., 25:235009, 2008.
  45. M. C. Werner. Gravitational lensing in the Kerr-Randers optical geometry. Gen. Rel. Grav., 44:3047–3057, 2012.
  46. G. Crisnejo and E. Gallo. Weak lensing in a plasma medium and gravitational deflection of massive particles using the gauss-bonnet theorem. a unified treatment. Phys. Rev. D, 97:124016, Jun 2018.
  47. A. Övgün. Light deflection by Damour-Solodukhin wormholes and Gauss-Bonnet theorem. Phys. Rev. D, 98(4):044033, 2018.
  48. Effect of Lorentz symmetry breaking on the deflection of light in a cosmic string spacetime. Phys. Rev. D, 96:024040, Jul 2017.
  49. Gravitational bending angle of light for finite distance and the Gauss-Bonnet theorem. Phys. Rev. D, 94(8):084015, 2016.
  50. Finite-distance corrections to the gravitational bending angle of light in the strong deflection limit. Phys. Rev. D, 95(4):044017, 2017.
  51. Gravitational deflection angle of light: Definition by an observer and its application to an asymptotically nonflat spacetime. Phys. Rev. D, 101(10):104032, 2020.
  52. Gravitational lens without asymptotic flatness: Its application to the Weyl gravity. Phys. Rev. D, 102(6):064060, 2020.
  53. H. Arakida. Light deflection and Gauss–Bonnet theorem: definition of total deflection angle and its applications. Gen. Rel. Grav., 50(5):48, 2018.
  54. H. Arakida. The optical geometry definition of the total deflection angle of a light ray in curved spacetime. JCAP, 08:028, 2021.
  55. R. M. Wald. General Relativity. Chicago Univ. Pr., Chicago, USA, 1984.
  56. M. P. do Carmo. Differential Geometry of Curves and Surfaces. Dover Publications, Mineola, New York, 2 edition, 2016.
  57. Modern Differential Geometry of Curves and Surfaces with Mathematica. Third Edition. Textbooks in Mathematics. Taylor & Francis, 2006.
  58. V. Perlick. On Fermat’s principle in general relativity. I. The general case. Class. Quant. Grav., 7(8):1319, 1990.
  59. Gravitomagnetic bending angle of light with finite-distance corrections in stationary axisymmetric spacetimes. Phys. Rev. D, 96(10):104037, 2017.
  60. J. Oprea. Differential Geometry and Its Applications. Classroom resource materials. Mathematical Association of America, 2007.
  61. H. Arakida and M. Kasai. Effect of the cosmological constant on the bending of light and the cosmological lens equation. Phys. Rev. D, 85:023006, 2012.
  62. Repository. Github.com/Mandy8808/Implementation.git, 2023.
  63. C. M. Will. Theory and Experiment in Gravitational Physics. Cambridge University Press, 2 edition, 2018.
  64. R. Epstein and I. I. Shapiro. Post-post-Newtonian deflection of light by the Sun. Phys. Rev. D, 22:2947–2949, 1980.
  65. A New Independent Limit on the Cosmological Constant/Dark Energy from the Relativistic Bending of Light by Galaxies and Clusters of Galaxies. Mon. Not. Roy. Astron. Soc., 388:1279–1283, 2008.
  66. G. W. Horndeski. Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys., 10:363–384, 1974.
  67. Covariant Galileon. Phys. Rev. D, 79:084003, 2009.
  68. Generalized Galileons: All scalar models whose curved background extensions maintain second-order field equations and stress-tensors. Phys. Rev. D, 80:064015, 2009.
  69. M. Afrin and S. G. Ghosh. Testing Horndeski Gravity from EHT Observational Results for Rotating Black Holes. Astrophys. J., 932(1):51, 2022.
  70. Gravitational weak lensing by black hole in Horndeski gravity in presence of plasma. Eur. Phys. J. Plus, 137(3):336, 2022.
  71. Black holes and stars in Horndeski theory. Class. Quant. Grav., 33(15):154002, 2016.
  72. N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys., 641:A6, 2020. [Erratum: Astron.Astrophys. 652, C4 (2021)].
  73. Weak deflection angle by asymptotically flat black holes in Horndeski theory using Gauss-Bonnet theorem. Int. J. Geom. Meth. Mod. Phys., 18(01):2150003, 2021.
  74. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020.
  75. A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics, 6(1):19–26, 1980.
  76. F. S. Lawrence. Some practical Runge-Kutta formulas. Mathematics of Computation, 46:135–150, 1986.
  77. V. Perlick and O. Y. Tsupko. Calculating black hole shadows: Review of analytical studies. Phys. Rept., 947:1–39, 2022.
  78. Numerical Mathematics. Springer New York, NY, 2007.
  79. The Laser astrometric test of relativity mission. Class. Quant. Grav., 21:2773–2799, 2004.
  80. M. Sereno. On the influence of the cosmological constant on gravitational lensing in small systems. Phys. Rev. D, 77:043004, 2008.
  81. M. Sereno. The role of Lambda in the cosmological lens equation. Phys. Rev. Lett., 102:021301, 2009.
  82. J. L. Synge. The Escape of Photons from Gravitationally Intense Stars. Mon. Not. Roy. Astron. Soc., 131(3):463–466, 1966.
  83. C. K. Qiao and M. Li. Geometric approach to circular photon orbits and black hole shadows. Phys. Rev. D, 106(2):L021501, 2022.
  84. Z. Stuchlik. The Motion of Test Particles in Black-Hole Backgrounds with Non-Zero Cosmological Constant. Bulletin of the Astronomical Institutes of Czechoslovakia, 34:129, June 1983.
  85. Z. Stuchlík and S. Hledík. Some properties of the Schwarzschild–de Sitter and Schwarzschild–anti-de Sitter spacetimes. Phys. Rev. D, 60:044006, Jul 1999.
  86. Black hole shadow in an expanding universe with a cosmological constant. Phys. Rev. D, 97(10):104062, 2018.
  87. R. Roy and S. Chakrabarti. Study on black hole shadows in asymptotically de Sitter spacetimes. Phys. Rev. D, 102(2):024059, 2020.
  88. First analytical calculation of black hole shadow in McVittie metric. Int. J. Mod. Phys. D, 29(09):2050062, 2020.
  89. S. Chandrasekhar. The Mathematical Theory of Black Holes. International series of monographs on physics. Clarendon Press, 1998.
  90. Photon regions and shadows of accelerated black holes. International Journal of Modern Physics D, 24(09):1542024, 2015.
  91. Shadow of a black hole at cosmological distances. Phys. Rev. D, 98(8):084020, 2018.
  92. Constraints on deviations from ΛΛ\Lambdaroman_ΛCDM within Horndeski gravity. JCAP, 02:053, 2016. [Erratum: JCAP 06, E01 (2016)].
  93. J. Noller and A. Nicola. Cosmological parameter constraints for Horndeski scalar-tensor gravity. Phys. Rev. D, 99(10):103502, 2019.
  94. W. T. Ni. ASTROD-GW: Overview and Progress. Int. J. Mod. Phys. D, 22:1341004, 2013.
  95. Overview and progress on the Laser Interferometer Space Antenna mission. Nature Astron., 6(12):1334–1338, 2022.
  96. Astrophysics with the laser interferometer space antenna. Living Reviews in Relativity, 26(1), mar 2023.
  97. W. T. Ni. Gravitational wave detection in space. Int. J. Mod. Phys. D, 25(14):1630001, 2016.
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.