Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Heterogeneous Coalition Formation and Scheduling with Multi-Skilled Robots (2306.11936v1)

Published 20 Jun 2023 in cs.RO

Abstract: We present an approach to task scheduling in heterogeneous multi-robot systems. In our setting, the tasks to complete require diverse skills. We assume that each robot is multi-skilled, i.e., each robot offers a subset of the possible skills. This makes the formation of heterogeneous teams (\emph{coalitions}) a requirement for task completion. We present two centralized algorithms to schedule robots across tasks and to form suitable coalitions, assuming stochastic travel times across tasks. The coalitions are dynamic, in that the robots form and disband coalitions as the schedule is executed. The first algorithm we propose guarantees optimality, but its run-time is acceptable only for small problem instances. The second algorithm we propose can tackle large problems with short run-times, and is based on a heuristic approach that typically reaches 1x-2x of the optimal solution cost.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm robotics: a review from the swarm engineering perspective,” Swarm Intelligence, vol. 7, pp. 1–41, 2013.
  2. R. K. Ramachandran, J. A. Preiss, and G. S. Sukhatme, “Resilience by reconfiguration: Exploiting heterogeneity in robot teams,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019, pp. 6518–6525.
  3. A. Prorok, M. Malencia, L. Carlone, G. S. Sukhatme, B. M. Sadler, and V. Kumar, “Beyond robustness: A taxonomy of approaches towards resilient multi-robot systems,” arXiv preprint arXiv:2109.12343, 2021.
  4. L. Barton and V. H. Allan, “Adapting to changing resource requirements for coalition formation in self-organized social networks,” in 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, vol. 2, 2008, pp. 282–285.
  5. L. Capezzuto, D. Tarapore, and S. Ramchurn, “Anytime and efficient coalition formation with spatial and temporal constraints,” in Multi-Agent Systems and Agreement Technologies, N. Bassiliades, G. Chalkiadakis, and D. de Jonge, Eds.   Cham: Springer International Publishing, 2020, pp. 589–606.
  6. L. Capezzuto, D. Tarapore, and S. D. Ramchurn, “Multi-agent routing and scheduling through coalition formation,” arXiv preprint arXiv:2105.00451, 2021.
  7. G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy for multi-robot task allocation,” The International Journal of Robotics Research, vol. 32, no. 12, pp. 1495–1512, 2013.
  8. C. Nam and D. A. Shell, “Analyzing the sensitivity of the optimal assignment in probabilistic multi-robot task allocation,” IEEE Robotics and Automation Letters, vol. 2, no. 1, pp. 193–200, 2016.
  9. T. Rahwan, “Algorithms for coalition formation in multi-agent systems,” Ph.D. dissertation, University of Southampton, 2007.
  10. M. Guo, B. Xin, J. Chen, and Y. Wang, “Multi-agent coalition formation by an efficient genetic algorithm with heuristic initialization and repair strategy,” Swarm and Evolutionary Computation, vol. 55, p. 100686, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S221065021831054X
  11. J. Hu, H. Coffin, J. Whitman, M. Travers, and H. Choset, “Large-scale heterogeneous multi-robot coverage via domain decomposition and generative allocation,” in International Workshop on the Algorithmic Foundations of Robotics, 2022.
  12. C. Huang and R. Liu, “Inner attention supported adaptive cooperation for heterogeneous multi robots teaming based on multi-agent reinforcement learning,” arXiv preprint arXiv:2002.06024, 2020.
  13. C. Lin, W. Luo, and K. Sycara, “Online connectivity-aware dynamic deployment for heterogeneous multi-robot systems,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 8941–8947.
  14. J. Parker, E. Nunes, J. Godoy, and M. Gini, “Exploiting spatial locality and heterogeneity of agents for search and rescue teamwork,” Journal of Field Robotics, vol. 33, no. 7, pp. 877–900, 2016.
  15. A. Visser, L. G. Nardin, and S. Castro, “Integrating the latest artificial intelligence algorithms into the robocup rescue simulation framework,” in Robot World Cup.   Springer, 2018, pp. 476–487.
  16. J. Guerrero, G. Oliver, and O. Valero, “Multi-robot coalitions formation with deadlines: Complexity analysis and solutions,” PLOS ONE, vol. 12, no. 1, pp. 1–26, 01 2017. [Online]. Available: https://doi.org/10.1371/journal.pone.0170659
  17. S. D. Ramchurn, M. Polukarov, A. Farinelli, N. Jennings, and C. Trong, “Coalition formation with spatial and temporal constraints,” in International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2010) (30/04/10), 2010, pp. 1181–1188, event Dates: May 2010. [Online]. Available: https://eprints.soton.ac.uk/268497/
  18. M. Koes, I. Nourbakhsh, and K. Sycara, “Constraint optimization coordination architecture for search and rescue robotics,” in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006.   IEEE, 2006, pp. 3977–3982.
  19. K. Leahy, Z. Serlin, C.-I. Vasile, A. Schoer, A. M. Jones, R. Tron, and C. Belta, “Scalable and robust algorithms for task-based coordination from high-level specifications (scratches),” IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2516–2535, 2022.
  20. M. Lippi and A. Marino, “A mixed-integer linear programming formulation for human multi-robot task allocation,” in 2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN), 2021, pp. 1017–1023.
  21. G. A. Korsah, B. Kannan, B. Browning, A. Stentz, and M. B. Dias, “xbots: An approach to generating and executing optimal multi-robot plans with cross-schedule dependencies,” in 2012 IEEE International Conference on Robotics and Automation.   IEEE, 2012, pp. 115–122.
  22. A. Mansfield, S. Manjanna, D. G. Macharet, and M. Ani Hsieh, “Multi-robot scheduling for environmental monitoring as a team orienteering problem,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021, pp. 6398–6404.
  23. A. Prorok, M. A. Hsieh, and V. Kumar, “The impact of diversity on optimal control policies for heterogeneous robot swarms,” IEEE Transactions on Robotics, vol. 33, no. 2, pp. 346–358, 2017.
  24. ——, “Fast redistribution of a swarm of heterogeneous robots,” in Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS), 2016, pp. 249–255.
  25. O. Kosak, C. Wanninger, A. Hoffmann, H. Ponsar, and W. Reif, “Multipotent systems: Combining planning, self-organization, and reconfiguration in modular robot ensembles,” Sensors, vol. 19, no. 1, p. 17, 2018.
  26. S. Amador, S. Okamoto, and R. Zivan, “Dynamic multi-agent task allocation with spatial and temporal constraints,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28, no. 1, 2014.
  27. I. Tkach and S. Amador, “Towards addressing dynamic multi-agent task allocation in law enforcement,” Autonomous Agents and Multi-Agent Systems, vol. 35, pp. 1–18, 2021.
  28. S. Mayya, D. S. D’antonio, D. Saldaña, and V. Kumar, “Resilient task allocation in heterogeneous multi-robot systems,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1327–1334, 2021.
  29. R. K. Ramachandran, P. Pierpaoli, M. Egerstedt, and G. S. Sukhatme, “Resilient monitoring in heterogeneous multi-robot systems through network reconfiguration,” IEEE Transactions on Robotics, vol. 38, no. 1, pp. 126–138, 2021.
  30. Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023. [Online]. Available: https://www.gurobi.com
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ashay Aswale (2 papers)
  2. Carlo Pinciroli (24 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.