Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Correlation Clustering Based Coalition Formation For Multi-Robot Task Allocation (1805.08629v1)

Published 20 May 2018 in cs.MA and cs.RO

Abstract: In this paper, we study the multi-robot task allocation problem where a group of robots needs to be allocated to a set of tasks so that the tasks can be finished optimally. One task may need more than one robot to finish it. Therefore the robots need to form coalitions to complete these tasks. Multi-robot coalition formation for task allocation is a well-known NP-hard problem. To solve this problem, we use a linear-programming based graph partitioning approach along with a region growing strategy which allocates (near) optimal robot coalitions to tasks in a negligible amount of time. Our proposed algorithm is fast (only taking 230 secs. for 100 robots and 10 tasks) and it also finds a near-optimal solution (up to 97.66% of the optimal). We have empirically demonstrated that the proposed approach in this paper always finds a solution which is closer (up to 9.1 times) to the optimal solution than a theoretical worst-case bound proved in an earlier work.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ayan Dutta (10 papers)
  2. Vladimir Ufimtsev (2 papers)
  3. Asai Asaithambi (1 paper)
Citations (13)

Summary

We haven't generated a summary for this paper yet.