Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing large deviation prefactors of stochastic dynamical systems based on machine learning (2306.11418v1)

Published 20 Jun 2023 in stat.ML, cs.LG, and math.DS

Abstract: In this paper, we present large deviation theory that characterizes the exponential estimate for rare events of stochastic dynamical systems in the limit of weak noise. We aim to consider next-to-leading-order approximation for more accurate calculation of mean exit time via computing large deviation prefactors with the research efforts of machine learning. More specifically, we design a neural network framework to compute quasipotential, most probable paths and prefactors based on the orthogonal decomposition of vector field. We corroborate the higher effectiveness and accuracy of our algorithm with a practical example. Numerical experiments demonstrate its powerful function in exploring internal mechanism of rare events triggered by weak random fluctuations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. Yuan S, Li Y and Zeng Z 2022 Math. Model. Nat. Pheno. 17 34
  2. Yuan S, Zeng Z and Duan J 2021 J. Stat. Mech. Theory E 2021 033204
  3. Zhu W and Wu Y 2003 Nonlinear Dynam. 32 291-305
  4. Freidlin M I and Wentzell A D 2012 Random Perturbations of Dynamical Systems (Berlin: Springer)
  5. Matkowsky B, Schuss Z and Tier C 1983 SIAM J. Appl. Math. 43 673-695
  6. Matkowsky B and Schuss Z 1982 SIAM J. Appl. Math. 42 822-834
  7. Roy R V 1997 Int. J. Nonlin. Mech. 32 173-186
  8. Maier R S and Stein D L 1997 SIAM J. Appl. Math. 57 752-790
  9. Bouchet F and Reygner J 2022 J. Stat. Phys. 189 21
  10. E W 2017 Commun. Math. Stat. 5 1-11
  11. Li Y and Duan J 2021 Physica D 417 132830
  12. Li Y and Duan J 2022 J. Stat. Phys. 186 30
  13. Rotskoff G and Vanden-Eijnden E 2018 NIPS 31 7146-7155
  14. Opper M 2019 Annalen der Physik 531 1800233
  15. Li Y, Duan J and Liu X 2021 Phys. Rev. E 103 012124
  16. Lin B, Li Q and Ren W 2021 PMLR 145 652-670
  17. Li Y, Yuan S and Xu S 2023 arXiv:2209.13098
  18. Bouchet F and Reygner J 2016 Ann. Henri Poincaré 17 12

Summary

We haven't generated a summary for this paper yet.