Computing large deviation prefactors of stochastic dynamical systems based on machine learning (2306.11418v1)
Abstract: In this paper, we present large deviation theory that characterizes the exponential estimate for rare events of stochastic dynamical systems in the limit of weak noise. We aim to consider next-to-leading-order approximation for more accurate calculation of mean exit time via computing large deviation prefactors with the research efforts of machine learning. More specifically, we design a neural network framework to compute quasipotential, most probable paths and prefactors based on the orthogonal decomposition of vector field. We corroborate the higher effectiveness and accuracy of our algorithm with a practical example. Numerical experiments demonstrate its powerful function in exploring internal mechanism of rare events triggered by weak random fluctuations.
- Yuan S, Li Y and Zeng Z 2022 Math. Model. Nat. Pheno. 17 34
- Yuan S, Zeng Z and Duan J 2021 J. Stat. Mech. Theory E 2021 033204
- Zhu W and Wu Y 2003 Nonlinear Dynam. 32 291-305
- Freidlin M I and Wentzell A D 2012 Random Perturbations of Dynamical Systems (Berlin: Springer)
- Matkowsky B, Schuss Z and Tier C 1983 SIAM J. Appl. Math. 43 673-695
- Matkowsky B and Schuss Z 1982 SIAM J. Appl. Math. 42 822-834
- Roy R V 1997 Int. J. Nonlin. Mech. 32 173-186
- Maier R S and Stein D L 1997 SIAM J. Appl. Math. 57 752-790
- Bouchet F and Reygner J 2022 J. Stat. Phys. 189 21
- E W 2017 Commun. Math. Stat. 5 1-11
- Li Y and Duan J 2021 Physica D 417 132830
- Li Y and Duan J 2022 J. Stat. Phys. 186 30
- Rotskoff G and Vanden-Eijnden E 2018 NIPS 31 7146-7155
- Opper M 2019 Annalen der Physik 531 1800233
- Li Y, Duan J and Liu X 2021 Phys. Rev. E 103 012124
- Lin B, Li Q and Ren W 2021 PMLR 145 652-670
- Li Y, Yuan S and Xu S 2023 arXiv:2209.13098
- Bouchet F and Reygner J 2016 Ann. Henri Poincaré 17 12