Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Globally Optimal Solutions to a Class of Fractional Optimization Problems Based on Proximal Gradient Algorithm (2306.11286v3)

Published 20 Jun 2023 in math.OC, cs.NA, and math.NA

Abstract: In this paper, we investigate a category of constrained fractional optimization problems that emerge in various practical applications. The objective function for this category is characterized by the ratio of a numerator and denominator, both being convex, semi-algebraic, Lipschitz continuous, and differentiable with Lipschitz continuous gradients over the constraint sets. The constrained sets associated with these problems are closed, convex, and semi-algebraic. We propose an efficient algorithm that is inspired by the proximal gradient method, and we provide a thorough convergence analysis. Our algorithm offers several benefits compared to existing methods. It requires only a single proximal gradient operation per iteration, thus avoiding the complicated inner-loop concave maximization usually required. Additionally, our method converges to a critical point without the typical need for a nonnegative numerator, and this critical point becomes a globally optimal solution with an appropriate condition. Our approach is adaptable to unbounded constraint sets as well. Therefore, our approach is viable for many more practical models. Numerical experiments show that our method not only reliably reaches ground-truth solutions in some model problems but also outperforms several existing methods in maximizing the Sharpe ratio with real-world financial data.

Summary

We haven't generated a summary for this paper yet.