Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inexact Proximal-Point Penalty Methods for Constrained Non-Convex Optimization (1908.11518v4)

Published 30 Aug 2019 in math.OC, cs.CC, cs.NA, and math.NA

Abstract: In this paper, an inexact proximal-point penalty method is studied for constrained optimization problems, where the objective function is non-convex, and the constraint functions can also be non-convex. The proposed method approximately solves a sequence of subproblems, each of which is formed by adding to the original objective function a proximal term and quadratic penalty terms associated to the constraint functions. Under a weak-convexity assumption, each subproblem is made strongly convex and can be solved effectively to a required accuracy by an optimal gradient-based method. The computational complexity of the proposed method is analyzed separately for the cases of convex constraint and non-convex constraint. For both cases, the complexity results are established in terms of the number of proximal gradient steps needed to find an $\varepsilon$-stationary point. When the constraint functions are convex, we show a complexity result of $\tilde O(\varepsilon{-5/2})$ to produce an $\varepsilon$-stationary point under the Slater's condition. When the constraint functions are non-convex, the complexity becomes $\tilde O(\varepsilon{-3})$ if a non-singularity condition holds on constraints and otherwise $\tilde O(\varepsilon{-4})$ if a feasible initial solution is available.

Citations (16)

Summary

We haven't generated a summary for this paper yet.