Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Machine Learning Approach for Predicting Deterioration in Alzheimer's Disease (2306.10334v1)

Published 17 Jun 2023 in cs.LG

Abstract: This paper explores deterioration in Alzheimers Disease using Machine Learning. Subjects were split into two datasets based on baseline diagnosis (Cognitively Normal, Mild Cognitive Impairment), with outcome of deterioration at final visit (a binomial essentially yes/no categorisation) using data from the Alzheimers Disease Neuroimaging Initiative (demographics, genetics, CSF, imaging, and neuropsychological testing etc). Six machine learning models, including gradient boosting, were built, and evaluated on these datasets using a nested crossvalidation procedure, with the best performing models being put through repeated nested cross-validation at 100 iterations. We were able to demonstrate good predictive ability using CART predicting which of those in the cognitively normal group deteriorated and received a worse diagnosis (AUC = 0.88). For the mild cognitive impairment group, we were able to achieve good predictive ability for deterioration with Elastic Net (AUC = 0.76).

Citations (8)

Summary

We haven't generated a summary for this paper yet.