Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coding for the Gaussian Channel in the Finite Blocklength Regime Using a CNN-Autoencoder (2306.09258v1)

Published 25 May 2023 in cs.IT, cs.LG, and math.IT

Abstract: The development of delay-sensitive applications that require ultra high reliability created an additional challenge for wireless networks. This led to Ultra-Reliable Low-Latency Communications, as a use case that 5G and beyond 5G systems must support. However, supporting low latency communications requires the use of short codes, while attaining vanishing frame error probability (FEP) requires long codes. Thus, developing codes for the finite blocklength regime (FBR) achieving certain reliability requirements is necessary. This paper investigates the potential of Convolutional Neural Networks autoencoders (CNN-AE) in approaching the theoretical maximum achievable rate over a Gaussian channel for a range of signal-to-noise ratios at a fixed blocklength and target FEP, which is a different perspective compared to existing works that explore the use of CNNs from bit-error and symbol-error rate perspectives. We explain the studied CNN-AE architecture, evaluate it numerically, and compare it to the theoretical maximum achievable rate and the achievable rates of polar coded quadrature amplitude modulation (QAM), Reed-Muller coded QAM, multilevel polar coded modulation, and a TurboAE-MOD scheme from the literature. Numerical results show that the CNN-AE outperforms these benchmark schemes and approaches the theoretical maximum rate, demonstrating the capability of CNN-AEs in learning good codes for delay-constrained applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. M. Shirvanimoghaddam, M. S. Mohammadi, R. Abbas, A. Minja, C. Yue, B. Matuz, G. Han, Z. Lin, W. Liu, Y. Li, S. Johnson, and B. Vucetic, “Short block-length codes for ultra-reliable low latency communications,” IEEE Commun. Mag., vol. 57, no. 2, pp. 130–137, 2019.
  2. Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2307–2359, 2010.
  3. 3GPP, “Technical Specification Group Radio Access Network; NR; Multiplexing and channel coding,” 3rd Generation Partnership Project (3GPP), TS 38.212, Release 16, V16.8.0, Jan. 2022.
  4. E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, 2009.
  5. H. Vangala, Y. Hong, and E. Viterbo, “Efficient algorithms for systematic polar encoding,” IEEE Commun. Lett., vol. 20, pp. 17–20, 2016.
  6. H. Vangala, E. Viterbo, and Y. Hong, “Permuted successive cancellation decoder for polar codes,” in Int. Symp. Inf. Theory Appl., 2014, pp. 438–442.
  7. L. Chandesris, V. Savin, and D. Declercq, “Lasting successive-cancellation based decoders for multilevel polar coded modulation,” in Int. Conf. Telecommun. (ICT), 2018, pp. 264–268.
  8. H. Kim, Y. Jiang, R. B. Rana, S. Kannan, S. Oh, and P. Viswanath, “Communication algorithms via deep learning,” in Int. Conf. Learn. Represent., 2018.
  9. B. Zhu, J. Wang, L. He, and J. Song, “Joint transceiver optimization for wireless communication phy using neural network,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1364–1373, 2019.
  10. T. Mu, X. Chen, L. Chen, H. Yin, and W. Wang, “An end-to-end block autoencoder for physical layer based on neural networks,” arXiv preprint arXiv:1906.06563, 2019.
  11. I. Ahmed, W. Xu, R. Annavajjala, and W.-S. Yoo, “Joint demodulation and decoding with multi-label classification using deep neural networks,” in Int. Conf. Artificial Intelligence Inf. Commun., 2021, pp. 365–370.
  12. T. O’shea and J. Hoydis, “An introduction to deep learning for the physical layer,” IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 4, pp. 563–575, 2017.
  13. N. Rajapaksha, N. Rajatheva, and M. Latva-aho, “Low complexity autoencoder based end-to-end learning of coded communications systems,” in IEEE Veh. Technol. Conf, 2020, pp. 1–7.
  14. Y. Inoue, D. Hisano, K. Maruta, Y. Hara-Azumi, and Y. Nakayama, “Deep joint source-channel coding and modulation for underwater acoustic communication,” in IEEE Glob. Commun. Conf., 2021, pp. 1–7.
  15. Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P. Viswanath, “Joint channel coding and modulation via deep learning,” in Int. Workshop Signal Processing Advances Wireless Commun., 2020, pp. 1–5.
  16. K. Vedula, R. Paffenroth, and D. R. Brown, “Joint coding and modulation in the ultra-short blocklength regime for bernoulli-gaussian impulsive noise channels using autoencoders,” in Int. Conf. Acoust. Speech Signal Process, 2020, pp. 5065–5069.
  17. C. E. Shannon, “A mathematical theory of communication,” The Bell system technical journal, 1948.
  18. W. Yin, K. Kann, M. Yu, and H. Schütze, “Comparative study of CNN and RNN for natural language processing,” arXiv preprint arXiv:1702.01923, 2017.
  19. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Int. Conf. Learn. Represent., Y. Bengio and Y. LeCun, Eds., 2015.

Summary

We haven't generated a summary for this paper yet.