Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Channel Coding Toward 6G: Technical Overview and Outlook (2405.07547v1)

Published 13 May 2024 in cs.IT, eess.SP, and math.IT

Abstract: Channel coding plays a pivotal role in ensuring reliable communication over wireless channels. With the growing need for ultra-reliable communication in emerging wireless use cases, the significance of channel coding has amplified. Furthermore, minimizing decoding latency is crucial for critical-mission applications, while optimizing energy efficiency is paramount for mobile and the Internet of Things (IoT) communications. As the fifth generation (5G) of mobile communications is currently in operation and 5G-advanced is on the horizon, the objective of this paper is to assess prominent channel coding schemes in the context of recent advancements and the anticipated requirements for the sixth generation (6G). In this paper, after considering the potential impact of channel coding on key performance indicators (KPIs) of wireless networks, we review the evolution of mobile communication standards and the organizations involved in the standardization, from the first generation (1G) to the current 5G, highlighting the technologies integral to achieving targeted KPIs such as reliability, data rate, latency, energy efficiency, spectral efficiency, connection density, and traffic capacity. Following this, we delve into the anticipated requirements for potential use cases in 6G. The subsequent sections of the paper focus on a comprehensive review of three primary coding schemes utilized in past generations and their recent advancements: low-density parity-check (LDPC) codes, turbo codes (including convolutional codes), polar codes (alongside Reed-Muller codes). Additionally, we examine alternative coding schemes like Fountain codes and sparse regression codes. Our evaluation includes a comparative analysis of error correction performance and the performance of hardware implementation for these coding schemes, providing insights into their potential and suitability for the upcoming 6G era.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (628)
  1. “Introducing 3GPP,” https://www.3gpp.org/about-us/introducing-3gpp, accessed: 2023-09-30.
  2. “3GPP portal - specifications,” https://portal.3gpp.org/#/55936-specifications, accessed: 2023-09-30.
  3. M. Series, “Framework and overall objectives of the future development of imt-2000 and systems beyond imt-2000,” Rec. ITU-R, M. 1645, 2003.
  4. ——, “Guidelines for evaluation of radio interface technologies for imt-advanced,” Report ITU, vol. 638, no. 31, 2009.
  5. ——, “Imt vision–framework and overall objectives of the future development of imt for 2020 and beyond,” Recommendation ITU, vol. 2083, no. 0, 2015.
  6. “The next wave of 5g – 3GPP release 19,” https://www.ericsson.com/en/blog/2023/12/3gpp-release-19, accessed: 2024-01-26.
  7. M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, “Toward 6g networks: Use cases and technologies,” IEEE Communications Magazine, vol. 58, no. 3, pp. 55–61, 2020.
  8. 3rd Generation Partnership Project (3GPP), “GSM/EDGE channel coding,” Sophia Antipolis, France, Technical Speification (TS) 45.003 v4.4.0 (Release 4), 2005.
  9. C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1,” in Proc. IEEE Int. Conf. Commun. (ICC), vol. 2, 1993, pp. 1064–1070 vol.2.
  10. 3rd Generation Partnership Project (3GPP), “Multiplexing and channel coding (TDD),” Sophia Antipolis, France, Technical Speification (TS) 25.222 v3.10.0 (Release 1999), 2002.
  11. ——, “Evolved universal terrestrial radio access (E-UTRA); multiplexing and channel coding,” Sophia Antipolis, France, Technical Speification (TS) 36.212 v8.8.0 (Release 8), 2009.
  12. ——, “NR; multiplexing and channel coding,” Sophia Antipolis, France, Technical Speification (TS) 38.212 v15.13.0 (Release 15), 2022.
  13. D. Hui, S. Sandberg, Y. Blankenship, M. Andersson, and L. Grosjean, “Channel coding in 5g new radio: A tutorial overview and performance comparison with 4g lte,” ieee vehicular technology magazine, vol. 13, no. 4, pp. 60–69, 2018.
  14. M. Latva-aho, K. Leppänen et al., “Key drivers and research challenges for 6g ubiquitous wireless intelligence,” 2019.
  15. G. D’Aria et al., “Expanded 6g vision, use cases and societal values–including aspects of sustainability, security and spectrum,” technical report, Hexa-X Project, 2021.
  16. NGMN, “White Paper: 6G Use Cases and Analysis,” Tech. Rep., Feb 2022.
  17. Fraunhofer, “White Paper: On the Road to 6G: Drivers, Challenges and enabling Technologies,” Tech. Rep., Nov 2021.
  18. Samsung, “White Paper: The Next Hyper-Connected Experience for All,” Tech. Rep., Jul 2020.
  19. Orange, “White Paper: Orange’s vision for 6G,” Tech. Rep., March 2022.
  20. Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the finite blocklength regime,” IEEE Transactions on Information Theory, vol. 56, no. 5, pp. 2307–2359, 2010.
  21. T. Erseghe, “Coding in the finite-blocklength regime: Bounds based on laplace integrals and their asymptotic approximations,” IEEE Transactions on Information Theory, vol. 62, no. 12, pp. 6854–6883, 2016.
  22. M. C. Coşkun, G. Durisi, T. Jerkovits, G. Liva, W. Ryan, B. Stein, and F. Steiner, “Efficient error-correcting codes in the short blocklength regime,” Physical Communication, vol. 34, pp. 66–79, 2019.
  23. E. M. Jazi and J. N. Laneman, “Coded modulation for gaussian channels: Dispersion- and entropy-limited regimes,” in 2015 IEEE Wireless Communications and Networking Conference (WCNC), 2015, pp. 528–533.
  24. M. Qiu, Y.-C. Huang, and J. Yuan, “Downlink transmission with heterogeneous URLLC services: Discrete signaling with single-user decoding,” IEEE J. Sel. Areas Commun., vol. 41, no. 7, pp. 2261–2277, Jul. 2023.
  25. E. Guizzo, “Closing in on the perfect code [turbo codes],” IEEE Spectrum, vol. 41, no. 3, pp. 36–42, 2004.
  26. 3GPP, “Universal mobile telecommunications system (UMTS); multiplexing and channel coding (FDD),” 3rd Generation Partnership Project (3GPP), Tech. Spec., TS 25.212 V17.0.0, Apr. 2022.
  27. ——, “Universal mobile telecommunications system (UMTS); multiplexing and channel coding (TDD),” 3rd Generation Partnership Project (3GPP), Tech. Spec., TS 25.222 V17.0.0, Apr. 2022.
  28. ——, “LTE;. evolved universal terrestrial radio access (E-UTRA);. multiplexing and channel coding,” 3rd Generation Partnership Project (3GPP), Tech. Spec., TS 36.212 V17.1.0, Apr. 2022.
  29. IEEE, “IEEE standard for local and metropolitan area networks, part 16: Air interface for fixed and mobile broadband wireless access systems,” Institute of Electrical and Electronics Engineers (IEEE), Tech. Spec., IEEE Std 802.16-2004/Cor 1-2005, Feb. 2006.
  30. ETSI, “Digital video broadcasting (DVB): second generation dvb interactive satellite system (DVB-RCS2): Part 2: Lower layers for satellite standard,” European Telecommunications Standards Institute (ETSI), Tech. Spec., EN 301 545-2 (V1.3.1), Jul. 2020.
  31. R1-167413, “Enhanced turbo codes for NR: Implementation details,” Orange and Institut Mines-Telecom, 3GPP TSG-RAN WG1 Meeting 86, Aug. 2016.
  32. R. Pyndiah, “Near-optimum decoding of product codes: block turbo codes,” IEEE Trans. Commun., vol. 46, no. 8, pp. 1003–1010, 1998.
  33. H. Mukhtar, A. Al-Dweik, and A. Shami, “Turbo product codes: Applications, challenges, and future directions,” IEEE Commun. Surveys Tuts., vol. 18, no. 4, pp. 3052–3069, 2016.
  34. C. Douillard, M. Jézéquel, C. Berrou, D. Electronique, A. Picart, P. Didier, and A. Glavieux, “Iterative correction of intersymbol interference: Turbo-equalization,” European Trans. Telecommun., vol. 6, no. 5, pp. 507–511, 1995.
  35. X. Wang and H. Poor, “Iterative (turbo) soft interference cancellation and decoding for coded CDMA,” IEEE Trans. Commun., vol. 47, no. 7, pp. 1046–1061, 1999.
  36. P. Elias, “Error-free coding,” IRE Trans. Inform. Theory, vol. 4, no. 4, pp. 29–37, 1954.
  37. D. Divsalar and F. Pollara, “Turbo codes for PCS applications,” in Proc. IEEE Int. Conf. Commun. (ICC), vol. 1, 1995, pp. 54–59 vol.1.
  38. H. Ma and J. Wolf, “On tail biting convolutional codes,” IEEE Trans. Commun., vol. 34, no. 2, pp. 104–111, 1986.
  39. C. Weiss, C. Bettstetter, S. Riedel, and D. Costello, “Turbo decoding with tail-biting trellises,” in URSI International Symposium on Signals, Systems, and Electronics. Conference Proceedings, 1998, pp. 343–348.
  40. C. Weiss, C. Bettstetter, and S. Riedel, “Code construction and decoding of parallel concatenated tail-biting codes,” IEEE Trans. Inf. Theory, vol. 47, no. 1, pp. 366–386, 2001.
  41. A. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decoding algorithm,” IEEE Trans. Inf. Theory, vol. 13, no. 2, pp. 260–269, 1967.
  42. L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory, vol. 20, no. 2, pp. 284–287, Mar. 1974.
  43. G. Forney, “The viterbi algorithm,” Proceedings of the IEEE, vol. 61, no. 3, pp. 268–278, 1973.
  44. J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision outputs and its applications,” in Proc. IEEE Globecom, vol. 3, 1989, pp. 1680–1686.
  45. R. Shao, S. Lin, and M. Fossorier, “Two decoding algorithms for tailbiting codes,” IEEE Trans. Commun., vol. 51, no. 10, pp. 1658–1665, 2003.
  46. N. Seshadri and C.-E. Sundberg, “List Viterbi decoding algorithms with applications,” IEEE Trans. Commun., vol. 42, no. 234, pp. 313–323, 1994.
  47. H. Yang, E. Liang, M. Pan, and R. D. Wesel, “CRC-aided list decoding of convolutional codes in the short blocklength regime,” IEEE Trans. Inf. Theory, vol. 68, no. 6, pp. 3744–3766, 2022.
  48. P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain,” in Proc. IEEE Int. Conf. Commun. (ICC), vol. 2, 1995, pp. 1009–1013.
  49. C. Douillard and C. Berrou, “Turbo codes with rate-m/(m+1) constituent convolutional codes,” IEEE Trans. Commun., vol. 53, no. 10, pp. 1630–1638, 2005.
  50. A. Heim and U. Sorger, “Turbo decoding: Why stopping-criteria do work,” in Proc. Int. Symp. Turbo Codes Rel. Topics (ISTC), 2008, pp. 255–259.
  51. F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498–519, 2001.
  52. S. Moloudi, M. Lentmaier, and A. Graell i Amat, “Spatially coupled turbo-like codes,” IEEE Trans. Inf. Theory, vol. 63, no. 10, pp. 6199–6215, 2017.
  53. D. V. Truhachev, M. Lentmaier, and K. S. Zigangirov, “Some results concerning design and decoding of turbo codes,” Probl. Inf. Transm., vol. 37, no. 3, p. 190–205, 2001.
  54. M. Breiling, “A logarithmic upper bound on the minimum distance of turbo codes,” IEEE Trans. Inf. Theory, vol. 50, no. 8, pp. 1692–1710, 2004.
  55. M. Cedervall and R. Johannesson, “A fast algorithm for computing distance spectrum of convolutional codes,” IEEE Trans. Inf. Theory, vol. 35, no. 6, pp. 1146–1159, 1989.
  56. I. Bocharova, M. Handlery, R. Johannesson, and B. Kudryashov, “A BEAST for prowling in trees,” IEEE Trans. Inf. Theory, vol. 50, no. 6, pp. 1295–1302, 2004.
  57. R. Garello, P. Pierleoni, and S. Benedetto, “Computing the free distance of turbo codes and serially concatenated codes with interleavers: algorithms and applications,” IEEE J. Sel. Areas Commun., vol. 19, no. 5, pp. 800–812, 2001.
  58. E. Rosnes and Y. Ytrehus, “Improved algorithms for the determination of turbo-code weight distributions,” IEEE Trans. Commun., vol. 53, no. 1, pp. 20–26, 2005.
  59. R. Garello and A. Vila-Casado, “The all-zero iterative decoding algorithm for turbo code minimum distance computation,” in Proc. IEEE Int. Conf. Commun. (ICC), vol. 1, 2004, pp. 361–364.
  60. S. Crozier, P. Guinand, and A. Hunt, “Estimating the minimum distance of large-block turbo codes using iterative multiple-impulse methods,” in Proc. Int. Symp. Turbo Codes Rel. Topics (ISTC), 2006, pp. 1–6.
  61. S. Benedetto and G. Montorsi, “Unveiling turbo codes: some results on parallel concatenated coding schemes,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp. 409–428, 1996.
  62. T. Richardson and R. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 599–618, 2001.
  63. B. Kurkoski, P. Siegel, and J. Wolf, “Exact probability of erasure and a decoding algorithm for convolutional codes on the binary erasure channel,” in Proc. IEEE Globecom, vol. 3, 2003, pp. 1741–1745.
  64. G. M. Kraidy and V. Savin, “Capacity-approaching irregular turbo codes for the binary erasure channel,” IEEE Trans. Commun., vol. 58, no. 9, pp. 2516–2524, 2010.
  65. I. Andriyanova, “Finite-length scaling of turbo-like code ensembles on the binary erasure channel,” IEEE J. Sel. Areas Commun., vol. 27, no. 6, pp. 918–927, 2009.
  66. C. Measson, R. Urbanke, A. Montanari, and T. Richardson, “Maximum a posteriori decoding and turbo codes for general memoryless channels,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2005, pp. 1241–1245.
  67. M. U. Farooq, A. Graell i Amat, and M. Lentmaier, “Threshold computation for spatially coupled turbo-like codes on the AWGN channel,” Entropy, vol. 23, no. 2, 2021.
  68. S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated codes,” IEEE Trans. Commun., vol. 49, no. 10, pp. 1727–1737, 2001.
  69. M. El-Hajjar and L. Hanzo, “EXIT charts for system design and analysis,” IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 127–153, 2014.
  70. S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check codes for modulation and detection,” IEEE Trans. Commun., vol. 52, no. 4, pp. 670–678, 2004.
  71. J. Hagenauer, “The EXIT chart—introduction to extrinsic informationtransfer in iterative processing,” in Proc. 12th Europ. Signal Process. Conf (EUSIPCO), Sep. 2004, p. 1541–1548.
  72. S. Benedetto and G. Montorsi, “Design of parallel concatenated convolutional codes,” IEEE Trans. Commun., vol. 44, no. 5, pp. 591–600, 1996.
  73. C. Measson, “Conservation laws for coding,” Ph.D. dissertation, École polytechnique fédérale de Lausanne, Lausanne, Switzerland, 2006.
  74. B. Vucetic, Y. Li, L. C. Perez, and F. Jiang, “Recent advances in turbo code design and theory,” Proc. IEEE, vol. 95, no. 6, pp. 1323–1344, 2007.
  75. P. Popovski, L. Kocarev, and A. Risteski, “Design of flexible-length s-random interleaver for turbo codes,” IEEE Commun. Lett., vol. 8, no. 7, pp. 461–463, 2004.
  76. S. Dolinar and D. Divsalar, “Weight distributions for turbo codes using random and nonrandom permutations,” JPL, Pasadena, CA, TDA Prog. Rep., Aug. 1995.
  77. S. Crozier, “New high-spread high-distance interleavers for turbo codes,” in Proc. 20th Biennial Symp. Commun., 2000, pp. 3–7.
  78. E. Boutillon and D. Gnaedig, “Maximum spread of D-dimensional multiple turbo codes,” IEEE Trans. Commun., vol. 53, no. 8, pp. 1237–1242, 2005.
  79. K. Gracie and S. Crozier, “Convergence performance and EXIT analysis of 4-state partially-systematic turbo codes,” in Proc. Int. Symp. Turbo Codes Rel. Topics (ISTC), 2008, pp. 414–419.
  80. S. Crozier and K. Gracie, “Rate-compatible turbo codes designed with puncture-constrained DRP interleavers,” in Proc. IEEE Globecom, 2011, pp. 1–5.
  81. R. Garzón-Bohórquez, C. Abdel Nour, and C. Douillard, “Protograph-based interleavers for punctured turbo codes,” IEEE Trans. Commun., vol. 66, no. 5, pp. 1833–1844, 2018.
  82. R. Garzón-Bohórquez, R. Klaimi, C. A. Nour, and C. Douillard, “Mitigating correlation problems in turbo decoders,” in Proc. Int. Symp. Turbo Codes Iterative Inf. Process (ISTC), Dec. 2018, pp. 1–5.
  83. R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inf. Theory, vol. 27, no. 5, pp. 533–547, 1981.
  84. J. Thorpe, “Low-density parity-check (LDPC) codes constructed from protographs,” Jet Propulsion Lab., Pasadena, CA, USA, IPN Progr. Rep., 2003.
  85. J. Sun and O. Takeshita, “Interleavers for turbo codes using permutation polynomials over integer rings,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 101–119, 2005.
  86. E. Rosnes and O. Y. Takeshita, “Optimum distance quadratic permutation polynomial-based interleavers for turbo codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2006, pp. 1988–1992.
  87. O. Y. Takeshita, “Permutation polynomial interleavers: An algebraic-geometric perspective,” IEEE Trans. Inf. Theory, vol. 53, no. 6, pp. 2116–2132, 2007.
  88. O. Takeshita, “On maximum contention-free interleavers and permutation polynomials over integer rings,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 1249–1253, 2006.
  89. S. Crozier and P. Guinand, “High-performance low-memory interleaver banks for turbo-codes,” in Proc. IEEE VTC, vol. 4, 2001, pp. 2394–2398 vol.4.
  90. S. Crozier, A. Gracie, P. Guinand, A. Hunt, R. Kerr, and J. Lodge, “Universal turbo code design for wireless communication,” CRC White Paper, Feb. 2011.
  91. S. Crozier and P. Guinand, “Distance upper bounds and true minimum distance results for turbo-codes designed with DRP interleavers,” Ann. Télécommun., vol. 60, no. 1-2, p. 10–28, 2005.
  92. S. Crozier and K. Gracie, “On the error-rate performance of 4-state turbo codes with puncture-constrained DRP interleavers,” in Proc. IEEE Int. Conf. Commun. (ICC), 2012, pp. 2601–2605.
  93. C. Berrou, Y. Saouter, C. Douillard, S. Kerouedan, and M. Jezequel, “Designing good permutations for turbo codes: towards a single model,” in Proc. IEEE Int. Conf. Commun. (ICC), vol. 1, 2004, pp. 341–345.
  94. R1-167414, “Enhanced turbo codes for NR: Performance evaluation,” Orange and Institut Mines-Telecom, 3GPP TSG-RAN WG1 Meeting 86, Aug. 2016.
  95. R. Garzón Bohórquez, C. A. Nour, and C. Douillard, “On the equivalence of interleavers for turbo codes,” IEEE Wireless Commun. Lett., vol. 4, no. 1, pp. 58–61, 2015.
  96. L. Trifina and D. Tarniceriu, “On the equivalence of cubic permutation polynomial and ARP interleavers for turbo codes,” IEEE Trans. Commun., vol. 65, no. 2, pp. 473–485, 2017.
  97. J. Li, Q. Chen, S. Gao, Z. Ma, and P. Fan, “The optimal puncturing pattern design for rate-compatible punctured turbo codes,” in International Conference on Wireless Communications & Signal Processing, 2009, pp. 1–5.
  98. J.-F. Cheng, A. Nimbalker, Y. Blankenship, B. Classon, and T. K. Blankenship, “Analysis of circular buffer rate matching for LTE turbo code,” in Proc. IEEE VTC, 2008, pp. 1–5.
  99. Y. Jiang, S. Kannan, H. Kim, S. Oh, H. Asnani, and P. Viswanath, “Deepturbo: Deep turbo decoder,” in International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2019, pp. 1–5.
  100. Y. He, J. Zhang, S. Jin, C.-K. Wen, and G. Y. Li, “Model-driven DNN decoder for turbo codes: Design, simulation, and experimental results,” IEEE Trans. Commun., vol. 68, no. 10, pp. 6127–6140, 2020.
  101. S. A. Hebbar, R. K. Mishra, S. K. Ankireddy, A. V. Makkuva, H. Kim, and P. Viswanath, “TinyTurbo: Efficient turbo decoders on edge,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2022, pp. 2797–2802.
  102. M. F. Brejza, L. Li, R. G. Maunder, B. M. Al-Hashimi, C. Berrou, and L. Hanzo, “20 years of turbo coding and energy-aware design guidelines for energy-constrained wireless applications,” IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp. 8–28, 2016.
  103. P. H. P. Robertson and E. Villebrun, “Optimal and sub-optimal maximum a posteriori algorithms suitable for turbo decoding,” vol. 8, no. 2, p. 119–125, 1997.
  104. J.-F. Cheng and T. Ottosson, “Linearly approximated log-MAP algorithms for turbo decoding,” in Proc. IEEE VTC, vol. 3, 2000, pp. 2252–2256 vol.3.
  105. H. Wang, H. Yang, and D. Yang, “Improved Log-MAP decoding algorithm for turbo-like codes,” IEEE Commun. Lett., vol. 10, no. 3, pp. 186–188, 2006.
  106. D.-H. Nguyen and H. Nguyen, “An improved Log-MAP algorithm based on polynomial regression function for LTE turbo decoding,” in Proc. IEEE Int. Conf. Commun. Workshop, 2015, pp. 2163–2167.
  107. A. Worm, P. Hoeher, and N. Wehn, “Turbo-decoding without SNR estimation,” IEEE Commun. Lett., vol. 4, no. 6, pp. 193–195, 2000.
  108. A. F. J. Vogt, “Improving the Max-Log-MAP turbo decoder,” Electron. Lett, vol. 36, no. 23, p. 1937–1939, 2000.
  109. H. Claussen, H. R. Karimi, and B. Mulgrew, “Improved Max-Log-MAP turbo decoding by extrinsic information scaling and combining,” EURASIP J. Appl. Signal Process., vol. 2005, no. 6, pp. 820–827, May 2005.
  110. R. G. Maunder, “A fully-parallel turbo decoding algorithm,” IEEE Trans. Commun., vol. 63, no. 8, pp. 2762–2775, 2015.
  111. M. Fossorier, F. Burkert, S. Lin, and J. Hagenauer, “On the equivalence between SOVA and max-log-MAP decodings,” IEEE Commun. Lett., vol. 2, no. 5, pp. 137–139, 1998.
  112. V. H. S. Le, C. Abdel Nour, E. Boutillon, and C. Douillard, “Revisiting the Max-Log-Map algorithm with SOVA update rules: New simplifications for high-radix SISO decoders,” IEEE Trans. Commun., vol. 68, no. 4, pp. 1991–2004, 2020.
  113. G. Battail, “Pondération des symboles décodés par l’algorithme de viterbi,” Ann. Telecommun., vol. 42, no. 1-2, pp. 31–38, Jan. 1987.
  114. L. Lin and R. Cheng, “Improvements in SOVA-based decoding for turbo codes,” in Proc. IEEE Int. Conf. Commun. (ICC), vol. 3, 1997, pp. 1473–1478 vol.3.
  115. R. Klaimi, S. Weithoffer, C. A. Nour, and C. Douillard, “Simplified recursion units for Max-Log-MAP: New trade-offs through variants of local-SOVA,” in Proc. Int. Symp. Topics Coding (ISTC), 2021, pp. 1–5.
  116. Y. Ould-Cheikh-Mouhamedou, S. Crozier, K. Gracie, P. Guinand, and P. Kabal, “A method for lowering turbo code error flare using correction impulses and repeated decoding,” in Proc. Int. Symp. Turbo Codes Rel. Topics (ISTC), 2006, pp. 1–6.
  117. Y. Ould-Cheikh-Mouhamedou and S. Crozier, “Improving the error rate performance of turbo codes using the forced symbol method,” IEEE Commun. Lett., vol. 11, no. 7, pp. 616–618, 2007.
  118. T. Tonnellier, C. Leroux, B. Le Gal, B. Gadat, C. Jego, and N. Van Wambeke, “Lowering the error floor of turbo codes with CRC verification,” IEEE Wireless Commun. Lett., vol. 5, no. 4, pp. 404–407, 2016.
  119. T. Gendron, E. Boutillon, C. A. Nour, and D. Gnaedig, “Revisiting augmented decoding techniques for LTE turbo codes,” in Proc. Int. Symp. Topics Coding (ISTC), 2021, pp. 1–5.
  120. M. J. Thul, F. Gilbert, T. Vogt, G. Kreiselmaier, and N. Wehn, “A scalable system architecture for high-throughput turbo-decoders,” Journal of VLSI signal processing systems for signal, image and video technology, vol. 39, no. 1-2, pp. 63–77, 2005.
  121. S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “A soft-input soft-output maximum a posteriori (MAP) module to decode parallel and serial concatenated codes,” JPL, Pasadena, CA, TDA Prog. Rep. 127, Nov. 1996.
  122. V. H. S. Le, “Design of next-generation Tb/s turbo codes,” Ph.D. dissertation, IMT Atlantique, Nantes, France, 2021.
  123. T. Ilnseher, F. Kienle, C. Weis, and N. Wehn, “A 2.15GBit/s turbo code decoder for LTE advanced base station applications,” in Proc. Int. Symp. Turbo Codes Iterative Inf. Process (ISTC), 2012, pp. 21–25.
  124. R. Shrestha and R. P. Paily, “High-throughput turbo decoder with parallel architecture for LTE wireless communication standards,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 9, pp. 2699–2710, 2014.
  125. S. Weithoffer, O. Griebel, R. Klaimi, C. A. Nour, and N. Wehn, “Advanced hardware architectures for turbo code decoding beyond 100 Gb/s,” 2020, pp. 1–6.
  126. A. Worm, H. Lamm, and N. Wehn, “A high-speed MAP architecture with optimized memory size and power consumption,” in IEEE Workshop Signal Proc. Systems (SiPS), 2000, pp. 265–274.
  127. S. Weithoffer, F. Pohl, and N. Wehn, “On the applicability of trellis compression to turbo-code decoder hardware architectures,” in Proc. Int. Symp. Turbo Codes Iterative Inf. Process (ISTC), 2016, pp. 61–65.
  128. G. Wang, H. Shen, Y. Sun, J. R. Cavallaro, A. Vosoughi, and Y. Guo, “Parallel interleaver design for a high throughput HSPA+/LTE multi-standard turbo decoder,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 5, pp. 1376–1389, 2014.
  129. J. Zhang and M. Fossorier, “Shuffled iterative decoding,” IEEE Trans. Commun., vol. 53, no. 2, pp. 209–213, 2005.
  130. S. Weithoffer, C. A. Nour, N. Wehn, C. Douillard, and C. Berrou, “25 years of turbo codes: From Mb/s to beyond 100 Gb/s,” in Proc. Int. Symp. Turbo Codes Iterative Inf. Process (ISTC), 2018, pp. 1–6.
  131. S. Weithoffer, R. Klaimi, C. A. Nour, N. Wehn, and C. Douillard, “Fully pipelined iteration unrolled decoders the road to Tb/s turbo decoding,” 2020, pp. 5115–5119.
  132. E. Rosnes and O. Ytrehus, “On the design of bit-interleaved turbo-coded modulation with low error floors,” IEEE Trans. Commun., vol. 54, no. 9, pp. 1563–1573, 2006.
  133. A. Alvarado, E. Agrell, L. Szczecinski, and A. Svensson, “Exploiting UEP in QAM-based BICM: interleaver and code design,” IEEE Trans. Commun., vol. 58, no. 2, pp. 500–510, 2010.
  134. R. Klaimi, “Study of non-binary turbo codes for future communication and broadcasting systems,” Ph.D. dissertation, IMT Atlantique, Nantes, France, 2019.
  135. J. L. Massey and T. Mittelho, “Convolutional codes over rings,” in Proc. 4th Joint Swedish–Soviet Int. Workshop Inf. Theory, 1989, pp. 14–18.
  136. B. Frey and D. MacKay, “Irregular turbo codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2000, p. 121.
  137. J. Boutros, G. Caire, E. Viterbo, H. Sawaya, and S. Vialle, “Turbo code at 0.03 db from capacity limit,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2002, pp. 56–.
  138. S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial concatenation of interleaved codes: performance analysis, design, and iterative decoding,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 909–926, 1998.
  139. A. Graell i Amat, G. Montorsi, and F. Vatta, “Design and performance analysis of a new class of rate compatible serially concatenated convolutional codes,” IEEE Trans. Commun., vol. 57, no. 8, pp. 2280–2289, 2009.
  140. S. Moloudi, M. Lentmaier, and A. Graell i Amat, “Spatially coupled turbo-like codes: A new trade-off between waterfall and error floor,” IEEE Trans. Commun., vol. 67, no. 5, pp. 3114–3123, 2019.
  141. L. Yang, Y. Xie, X. Wu, J. Yuan, X. Cheng, and L. Wan, “Partially information-coupled turbo codes for LTE systems,” IEEE Transactions on Communications, vol. 66, no. 10, pp. 4381–4392, 2018.
  142. M. Qiu, X. Wu, A. Graell i Amat, and J. Yuan, “Analysis and design of partially information- and partially parity-coupled turbo codes,” IEEE Trans. Commun., vol. 69, no. 4, pp. 2107–2122, 2021.
  143. M. Qiu, X. Wu, J. Yuan, and A. Graell i Amat, “Generalized spatially-coupled parallel concatenated codes with partial repetition,” IEEE Trans. Commun., vol. 70, no. 9, pp. 5771–5787, 2022.
  144. W. Zhang, M. Lentmaier, K. S. Zigangirov, and D. J. Costello, “Braided convolutional codes: A new class of turbo-like codes,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 316–331, 2010.
  145. B. P. Smith, A. Farhood, A. Hunt, F. R. Kschischang, and J. Lodge, “Staircase codes: FEC for 100 Gb/s OTN,” Journal of Lightwave Technology, vol. 30, no. 1, pp. 110–117, 2012.
  146. M. Qiu, L. Yang, Y. Xie, and J. Yuan, “Terminated staircase codes for NAND flash memories,” IEEE Trans. Commun., vol. 66, no. 12, pp. 5861–5875, 2018.
  147. M. Qiu and J. Yuan, “Sub-block rearranged staircase codes,” IEEE Trans. Commun., vol. 70, no. 9, pp. 5695–5710, 2022.
  148. A. Y. Sukmadji, U. Martínez-Peñas, and F. R. Kschischang, “Zipper codes,” Journal of Lightwave Technology, vol. 40, no. 19, pp. 6397–6407, 2022.
  149. M. Lentmaier, A. Sridharan, D. J. Costello, and K. S. Zigangirov, “Iterative decoding threshold analysis for LDPC convolutional codes,” IEEE Trans. Inf. Theory, vol. 56, no. 10, pp. 5274–5289, 2010.
  150. S. Kudekar, T. J. Richardson, and R. L. Urbanke, “Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC,” IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 803–834, 2011.
  151. A. R. Iyengar, P. H. Siegel, R. L. Urbanke, and J. K. Wolf, “Windowed decoding of spatially coupled codes,” IEEE Trans. Inf. Theory, vol. 59, no. 4, pp. 2277–2292, 2013.
  152. C. Rachinger, J. B. Huber, and R. R. Müller, “Comparison of convolutional and block codes for low structural delay,” IEEE Trans. Commun., vol. 63, no. 12, pp. 4629–4638, 2015.
  153. A. Yedla, Y.-Y. Jian, P. S. Nguyen, and H. D. Pfister, “A simple proof of threshold saturation for coupled scalar recursions,” in Proc. Int. Symp. Turbo Codes Iterative Inf. Process (ISTC), 2012, pp. 51–55.
  154. ——, “A simple proof of maxwell saturation for coupled scalar recursions,” IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 6943–6965, 2014.
  155. A. Yardi, T. Benaddi, C. Poulliat, and I. Andriyanova, “EBP-GEXIT charts for M-ary AWGN channel for generalized LDPC and turbo codes,” IEEE Trans. Commun., vol. 70, no. 6, pp. 3613–3626, 2022.
  156. C. Measson, A. Montanari, T. J. Richardson, and R. Urbanke, “The generalized area theorem and some of its consequences,” IEEE Trans. Inf. Theory, vol. 55, no. 11, pp. 4793–4821, 2009.
  157. C. Yang, S. Zhao, and X. Ma, “Hybrid coupled serially concatenated codes,” IEEE Trans. Commun., vol. 70, no. 7, pp. 4301–4315, 2022.
  158. M. Mahdavi, S. Weithoffer, M. Herrmann, L. Liu, O. Edfors, N. Wehn, and M. Lentmaier, “Spatially coupled serially concatenated codes: Performance evaluation and VLSI design tradeoffs,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 69, no. 5, pp. 1962–1975, 2022.
  159. M. Zhu, D. G. M. Mitchell, M. Lentmaier, D. J. Costello, and B. Bai, “Error propagation mitigation in sliding window decoding of braided convolutional codes,” IEEE Trans. Commun., vol. 68, no. 11, pp. 6683–6698, 2020.
  160. X. Wu, M. Qiu, and J. Yuan, “Partially information coupled duo-binary turbo codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2020, pp. 461–466.
  161. M. Qiu, X. Wu, J. Yuan, and A. Graell i Amat, “Generalized spatially coupled parallel concatenated convolutional codes with partial repetition,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2021, pp. 581–586.
  162. R. E. G. Bohórquez, “Advanced coding and interleaving techniques for next generation communication and broadcasting systems,” Ph.D. dissertation, Télécom Bretagne, 2015.
  163. M. Baldi, M. Bianchi, F. Chiaraluce, R. Garello, I. A. Sanchez, and S. Cioni, “Advanced channel coding for space mission telecommand links,” in Proc. IEEE VTC, 2013, pp. 1–5.
  164. G. Liva, E. Paolini, B. Matuz, S. Scalise, and M. Chiani, “Short turbo codes over high order fields,” IEEE Trans. Commun., vol. 61, no. 6, pp. 2201–2211, 2013.
  165. Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel coding rate in the finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2307–2359, 2010.
  166. V. Y. F. Tan and M. Tomamichel, “The third-order term in the normal approximation for the AWGN channel,” IEEE Trans. Inf. Theory, vol. 61, no. 5, pp. 2430–2438, 2015.
  167. C. Roth, S. Belfanti, C. Benkeser, and Q. Huang, “Efficient parallel turbo-decoding for high-throughput wireless systems,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 6, pp. 1824–1835, 2014.
  168. A. Li, L. Xiang, T. Chen, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, “VLSI implementation of fully parallel LTE turbo decoders,” IEEE Access, vol. 4, pp. 323–346, 2016.
  169. A. Osmani and H. Moreno Trujillo, “Analysis of the finite length performance of spatially coupled convolutional codes,” 2015, master Thesis, Lund University.
  170. G. Iro and R. Kabbinale, “Comparison of various concatenated convolutional code ensembles under spatial coupling,” 2017, master Thesis, Lund University.
  171. M. Mahdavi, M. Umar Farooq, L. Liu, O. Edfors, V. Öwall, and M. Lentmaier, “The effect of coupling memory and block length on spatially coupled serially concatenated codes,” in Proc. IEEE VTC, 2021, pp. 1–7.
  172. D. G. M. Mitchell, M. Lentmaier, and D. J. Costello, “Spatially coupled LDPC codes constructed from protographs,” IEEE Trans. Inf. Theory, vol. 61, no. 9, pp. 4866–4889, 2015.
  173. D. G. M. Mitchell, M. Lentmaier, A. E. Pusane, and D. J. Costello, “Randomly punctured LDPC codes,” IEEE J. Sel. Areas Commun., vol. 34, no. 2, pp. 408–421, 2016.
  174. M. Zhu, D. G. M. Mitchell, M. Lentmaier, D. J. Costello, and B. Bai, “Braided convolutional codes with sliding window decoding,” IEEE Trans. Commun., vol. 65, no. 9, pp. 3645–3658, 2017.
  175. R. Gallager, “Low-density parity-check codes,” vol. 8, no. 1, pp. 21–28.
  176. D. J. C. MacKay and R. M. Neal, “Good codes based on very sparse matrices,” in Cryptography and Coding, ser. Lecture Notes in Computer Science, C. Boyd, Ed.   Springer, pp. 100–111.
  177. ——, “Near shannon limit performance of low density parity check codes,” vol. 32, no. 18, pp. 1645–1646.
  178. D. MacKay, “Good error-correcting codes based on very sparse matrices,” vol. 45, no. 2, pp. 399–431.
  179. J. Pearl. Probabilistic reasoning in intelligent systems - 1st edition.
  180. “ETSI - EN 302 307-2 - digital video broadcasting (DVB); second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications; part 2: DVB-s2 extensions (DVB-s2x).”
  181. R. Tanner, “A recursive approach to low complexity codes,” vol. 27, no. 5, pp. 533–547.
  182. T. Richardson and R. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” vol. 47, no. 2, pp. 599–618.
  183. T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-approaching irregular low-density parity-check codes,” vol. 47, no. 2, pp. 619–637.
  184. M. Luby, M. Mitzenmacher, M. Shokrollahi, and D. Spielman, “Improved low-density parity-check codes using irregular graphs,” vol. 47, no. 2, pp. 585–598.
  185. S.-Y. Chung, G. Forney, T. Richardson, and R. Urbanke, “On the design of low-density parity-check codes within 0.0045 dB of the shannon limit,” vol. 5, no. 2, pp. 58–60.
  186. J. Thorpe, “Low-density parity-check (LDPC) codes constructed from protographs,” vol. 42-154, pp. 1–7.
  187. D. Divsalar and C. Jones, “Protograph based low error floor LDPC coded modulation,” in MILCOM 2005 - 2005 IEEE Military Communications Conference, pp. 378–385 Vol. 1.
  188. D. Divsalar, S. Dolinar, and C. Jones, “Construction of protograph LDPC codes with linear minimum distance,” in 2006 IEEE International Symposium on Information Theory, pp. 664–668.
  189. G. Liva, W. E. Ryan, and M. Chiani, “Quasi-cyclic generalized ldpc codes with low error floors,” vol. 56, no. 1, pp. 49–57.
  190. S. Abu-Surra, D. Divsalar, and W. E. Ryan, “Enumerators for protograph-based ensembles of LDPC and generalized LDPC codes,” vol. 57, no. 2, pp. 858–886.
  191. D. Divsalar, H. Jin, R. McEliece, “Coding theorms for turbo-like codes.”
  192. A. Abbasfar, D. Divsalar, and K. Yao, “Accumulate-repeat-accumulate codes,” vol. 55, no. 4, pp. 692–702.
  193. R. Echard and S.-C. Chang, “The pi-rotation low-density parity check codes,” in IEEE Global Telecommunications Conference, vol. 2, pp. 980–984 vol.2.
  194. H. Li, B. Bai, X. Mu, J. Zhang, and H. Xu, “Algebra-assisted construction of quasi-cyclic LDPC codes for 5g new radio,” vol. 6, pp. 50 229–50 244.
  195. “Low density parity check codes for use in near-earth and deep space applications,” vol. CCSDS 131.1-O-2.
  196. T.-Y. Chen, K. Vakilinia, D. Divsalar, and R. D. Wesel, “Protograph-based raptor-like LDPC codes,” vol. 63, no. 5, pp. 1522–1532.
  197. S. V. S. Ranganathan, D. Divsalar, and R. D. Wesel, “Quasi-cyclic protograph-based raptor-like LDPC codes for short block-lengths,” vol. 65, no. 6, pp. 3758–3777.
  198. A. Shokrollahi, “Raptor codes,” vol. 52, no. 6, pp. 2551–2567.
  199. M. Luby, “LT codes,” in The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings., pp. 271–280.
  200. S.-Y. Chung, T. Richardson, and R. Urbanke, “Analysis of sum-product decoding of low-density parity-check codes using a gaussian approximation,” vol. 47, no. 2, pp. 657–670.
  201. A. Ashikhmin, G. Kramer, and S. ten Brink, “Extrinsic information transfer functions: model and erasure channel properties,” vol. 50, no. 11, pp. 2657–2673.
  202. S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated codes,” vol. 49, no. 10, pp. 1727–1737.
  203. S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check codes for modulation and detection,” vol. 52, no. 4, pp. 670–678.
  204. W. Ryan and S. Lin, Channel Codes: Classical and Modern.   Cambridge University Press.
  205. G. Liva and M. Chiani, “Protograph LDPC codes design based on EXIT analysis,” in IEEE Global Telecommunications Conference, pp. 3250–3254.
  206. D. Divsalar, S. Dolinar, C. R. Jones, and K. Andrews, “Capacity-approaching protograph codes,” vol. 27, no. 6, pp. 876–888.
  207. A. Amraoui, A. Montanari, T. Richardson, and R. Urbanke, “Finite-length scaling for iteratively decoded LDPC ensembles,” vol. 55, no. 2, pp. 473–498.
  208. X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Progressive edge-growth tanner graphs,” in IEEE Global Telecommunications Conference, vol. 2, pp. 995–1001 vol.2.
  209. X.-Y. Hu, E. Eleftheriou, and D. Arnold, “Regular and irregular progressive edge-growth tanner graphs,” vol. 51, no. 1, pp. 386–398.
  210. J. L. Fan, “Array codes as LDPC codes,” in Constrained Coding and Soft Iterative Decoding, ser. The Springer International Series in Engineering and Computer Science, J. L. Fan, Ed.   Springer US, pp. 195–203.
  211. J. Kang, Q. Huang, L. Zhang, B. Zhou, and S. Lin, “Quasi-cyclic LDPC codes: an algebraic construction,” vol. 58, no. 5, pp. 1383–1396.
  212. L. Zhang, Q. Huang, S. Lin, K. Abdel-Ghaffar, and I. F. Blake, “Quasi-cyclic LDPC codes: An algebraic construction, rank analysis, and codes on latin squares,” vol. 58, no. 11, pp. 3126–3139.
  213. Y. Kou, S. Lin, and M. Fossorier, “Low-density parity-check codes based on finite geometries: a rediscovery and new results,” vol. 47, no. 7, pp. 2711–2736.
  214. D. V. Nguyen, S. K. Chilappagari, M. W. Marcellin, and B. Vasic, “On the construction of structured LDPC codes free of small trapping sets,” vol. 58, no. 4, pp. 2280–2302.
  215. B. Ammar, B. Honary, Y. Kou, J. Xu, and S. Lin, “Construction of low-density parity-check codes based on balanced incomplete block designs,” vol. 50, no. 6, pp. 1257–1269.
  216. I. Djurdjevic, J. Xu, K. Abdel-Ghaffar, and S. Lin, “A class of low-density parity-check codes constructed based on reed-solomon codes with two information symbols,” vol. 7, no. 7, pp. 317–319.
  217. B. Vasic and O. Milenkovic, “Combinatorial constructions of low-density parity-check codes for iterative decoding,” vol. 50, no. 6, pp. 1156–1176.
  218. L. Chen, J. Xu, I. Djurdjevic, and S. Lin, “Near-shannon-limit quasi-cyclic low-density parity-check codes,” vol. 52, no. 7, pp. 1038–1042.
  219. M. Fossorier, “Quasi-cyclic low-density parity-check codes from circulant permutation matrices,” vol. 50, no. 8, pp. 1788–1793.
  220. J. Xu, L. Chen, L. Zeng, L. Lan, and S. Lin, “Construction of low-density parity-check codes by superposition,” vol. 53, no. 2, pp. 243–251.
  221. H. Tang, J. Xu, S. Lin, and K. Abdel-Ghaffar, “Codes on finite geometries,” vol. 51, no. 2, pp. 572–596.
  222. L. Lan, Y. Y. Tai, S. Lin, B. Memari, and B. Honary, “New constructions of quasi-cyclic LDPC codes based on special classes of BIBD’s for the AWGN and binary erasure channels,” vol. 56, no. 1, pp. 39–48.
  223. L. Sassatelli and D. Declercq, “Nonbinary hybrid LDPC codes,” vol. 56, no. 10, pp. 5314–5334.
  224. S. Song, B. Zhou, S. Lin, and K. Abdel-Ghaffar, “A unified approach to the construction of binary and nonbinary quasi-cyclic LDPC codes based on finite fields,” vol. 57, no. 1, pp. 84–93.
  225. Q. Huang, Q. Diao, S. Lin, and K. Abdel-Ghaffar, “Cyclic and quasi-cyclic LDPC codes on constrained parity-check matrices and their trapping sets,” vol. 58, no. 5, pp. 2648–2671.
  226. J. Li, K. Liu, S. Lin, and K. Abdel-Ghaffar, “Algebraic quasi-cyclic LDPC codes: Construction, low error-floor, large girth and a reduced-complexity decoding scheme,” vol. 62, no. 8, pp. 2626–2637.
  227. D. Divsalar, S. Dolinar, and C. Jones, “Low-rate LDPC codes with simple protograph structure,” in IEEE International Symposium on Information Theory Proceedings, pp. 1622–1626.
  228. D. Divsalar, “Ensemble weight enumerators for protograph LDPC codes,” in IEEE International Symposium on Information Theory, pp. 1554–1558.
  229. K. Andrews, S. Dolinar, and J. Thorpe, “Encoders for block-circulant LDPC codes,” in IEEE International Symposium on Information Theory Proceedings, pp. 2300–2304.
  230. D. MacKay, G. Mitchison, and P. McFadden, “Sparse-graph codes for quantum error correction,” vol. 50, no. 10, pp. 2315–2330.
  231. Y. Xie and J. Yuan, “Protograph quantum LDPC codes from tensor product of parity-check matrices,” in IEEE Globecom Workshops, pp. 1–5.
  232. ——, “Reliable quantum LDPC codes over GF(4),” in IEEE Globecom Workshops, pp. 1–5.
  233. Y. Xie, J. Yuan, and Q. T. Sun, “Design of quantum LDPC codes from quadratic residue sets,” vol. 66, no. 9, pp. 3721–3735.
  234. Z. Li and B. Kumar, “A class of good quasi-cyclic low-density parity check codes based on progressive edge growth graph,” in Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 1990–1994.
  235. X. Liu, W. Zhang, and Z. Fan, “Construction of quasi-cyclic LDPC codes and the performance on the PR4-equalized MRC channel,” vol. 45, no. 10, pp. 3699–3702.
  236. Y. Xie, J. C. Mu, and J. Yuan, “Design of rate-compatible protograph-based LDPC codes with mixed circulants,” in 6th International Symposium on Turbo Codes & Iterative Information Processing, pp. 434–438.
  237. R. Smarandache and D. G. M. Mitchell, “A unifying framework to construct QC-LDPC tanner graphs of desired girth,” vol. 68, no. 9, pp. 5802–5822.
  238. R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error correcting binary group codes,” vol. 3, no. 1, pp. 68–79.
  239. Hocquenghem A., “Codes correcteurs derreurs,” vol. 2, no. 2, pp. 147 – 156.
  240. I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” vol. 8, no. 2, pp. 300–304.
  241. A. Jimenez and K. Zigangirov, “Periodic time-varying convolutional codes with low-density parity-check matrices,” in IEEE International Symposium on Information Theory, p. 305.
  242. A. Jimenez Felstrom and K. Zigangirov, “Time-varying periodic convolutional codes with low-density parity-check matrix,” vol. 45, no. 6, pp. 2181–2191.
  243. D. J. Costello, L. Dolecek, T. E. Fuja, J. Kliewer, D. G. Mitchell, and R. Smarandache, “Spatially coupled sparse codes on graphs: theory and practice,” IEEE Communications Magazine, vol. 52, no. 7, pp. 168–176, 2014.
  244. T. Richardson and R. Urbanke, Modern Coding Theory.   Cambridge University Press.
  245. S. Kudekar, T. J. Richardson, and R. L. Urbanke, “Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC,” vol. 57, no. 2, pp. 803–834.
  246. S. Kudekar, T. Richardson, and R. L. Urbanke, “Spatially coupled ensembles universally achieve capacity under belief propagation,” vol. 59, no. 12, pp. 7761–7813.
  247. A. E. Pusane, R. Smarandache, P. O. Vontobel, and D. J. Costello, “Deriving good LDPC convolutional codes from LDPC block codes,” vol. 57, no. 2, pp. 835–857.
  248. A. Yedla, P. S. Nguyen, H. D. Pfister, and K. R. Narayanan, “Universal codes for the gaussian MAC via spatial coupling,” in 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1801–1808.
  249. A. R. Iyengar, M. Papaleo, P. H. Siegel, J. K. Wolf, A. Vanelli-Coralli, and G. E. Corazza, “Windowed decoding of protograph-based LDPC convolutional codes over erasure channels,” vol. 58, no. 4, pp. 2303–2320.
  250. A. E. Pusane, A. J. Feltstrom, A. Sridharan, M. Lentmaier, K. S. Zigangirov, and D. J. Costello, “Implementation aspects of LDPC convolutional codes,” vol. 56, no. 7, pp. 1060–1069.
  251. P. Kang, Y. Xie, L. Yang, and J. Yuan, “Reliability-based windowed decoding for spatially coupled LDPC codes,” vol. 22, no. 7, pp. 1322–1325.
  252. M. Lentmaier, M. M. Prenda, and G. P. Fettweis, “Efficient message passing scheduling for terminated LDPC convolutional codes,” in IEEE International Symposium on Information Theory Proceedings, pp. 1826–1830.
  253. N. Ul Hassan, A. E. Pusane, M. Lentmaier, G. P. Fettweis, and D. J. Costello, “Non-uniform window decoding schedules for spatially coupled LDPC codes,” vol. 65, no. 2, pp. 501–510.
  254. I. Ali, J.-H. Kim, S.-H. Kim, H. Kwak, and J.-S. No, “Improving windowed decoding of SC LDPC codes by effective decoding termination, message reuse, and amplification,” vol. 6, pp. 9336–9346.
  255. K. Klaiber, S. Cammerer, L. Schmalen, and S. t. Brink, “Avoiding burst-like error patterns in windowed decoding of spatially coupled LDPC codes,” in IEEE 10th International Symposium on Turbo Codes & Iterative Information Processing (ISTC), pp. 1–5.
  256. D. G. M. Mitchell, M. Lentmaier, and D. J. Costello, “Spatially coupled LDPC codes constructed from protographs,” vol. 61, no. 9, pp. 4866–4889.
  257. Y. Xie, L. Yang, P. Kang, and J. Yuan, “Euclidean geometry-based spatially coupled LDPC codes for storage,” vol. 34, no. 9, pp. 2498–2509.
  258. D. Truhachev, D. G. M. Mitchell, M. Lentmaier, D. J. Costello, and A. Karami, “Code design based on connecting spatially coupled graph chains,” vol. 65, no. 9, pp. 5604–5617.
  259. A. E. Dehaghani, M.-R. Sadeghi, and F. Amirzade, “Improving asymptotic properties of loop construction of SC-LDPC chains over the BEC,” vol. 26, no. 3, pp. 495–499.
  260. Y. Liao, M. Qiu, and J. Yuan, “Self-connected spatially coupled LDPC codes with improved termination,” vol. 27, no. 8, pp. 1959–1963.
  261. J. Li, S. Lin, K. Abdel-Ghaffar, W. E. Ryan, and D. J. Costello, “Globally coupled LDPC codes,” in Information Theory and Applications Workshop (ITA), pp. 1–10.
  262. M. Nasseri, X. Xiao, B. Vasić, and S. Lin, “Globally coupled finite geometry and finite field LDPC coding schemes,” vol. 70, no. 9, pp. 9207–9216.
  263. J. Li, K. Liu, S. Lin, and K. Abdel-Ghaffar, “Reed-solomon based nonbinary globally coupled LDPC codes: Correction of random errors and bursts of erasures,” in IEEE International Symposium on Information Theory, pp. 381–385.
  264. J. Zhang, B. Bai, X. Mu, H. Xu, Z. Liu, and H. Li, “Construction and decoding of rate-compatible globally coupled LDPC codes,” vol. 2018, p. 4397671.
  265. Q. Wang, S. Cai, and X. Ma, “Free-ride coding for constructions of coupled LDPC codes,” vol. 71, no. 3, pp. 1259–1270.
  266. L. Yang, Y. Xie, J. Yuan, X. Cheng, and L. Wan, “Chained LDPC codes for future communication systems,” vol. 22, no. 5, pp. 898–901.
  267. “IEEE standard for information technology - telecommunications and information exchange between systems – LAN/MAN - specific requirements part 3: CSMA/CD access method and physical layer specifications - amendment: Physical layer and management parameters for 10 gb/s operation, type 10gbase-t,” pp. 1–181.
  268. “IEEE standard for information technology– local and metropolitan area networks– specific requirements– part 11: Wireless LAN medium access control (MAC)and physical layer (PHY) specifications amendment 5: Enhancements for higher throughput,” pp. 1–565.
  269. Z. Li, L. Chen, L. Zeng, S. Lin, and W. Fong, “Efficient encoding of quasi-cyclic low-density parity-check codes,” vol. 54, no. 1, pp. 71–81.
  270. “IEEE standard for information technology–telecommunications and information exchange between systems–local and metropolitan area networks–specific requirements-part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 3: Enhancements for very high throughput in the 60 GHz band,” pp. 1–628.
  271. T. Richardson and R. Urbanke, “Efficient encoding of low-density parity-check codes,” vol. 47, no. 2, pp. 638–656.
  272. “IEEE standard for local and metropolitan area networks - part 16: Air interface for fixed and mobile broadband wireless access systems - amendment for physical and medium access control layers for combined fixed and mobile operation in licensed bands,” pp. 1–822.
  273. “IEEE standard for information technology– local and metropolitan area networks– specific requirements– part 22: Cognitive wireless RAN medium access control (MAC) and physical layer (PHY) specifications: Policies and procedures for operation in the TV bands,” pp. 1–680.
  274. T. Tian, C. Jones, J. Villasenor, and R. Wesel, “Selective avoidance of cycles in irregular LDPC code construction,” vol. 52, no. 8, pp. 1242–1247.
  275. “ETSI EN 302 307 v1.2.1 (2009-08) - digital video broadcasting (DVB); second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications (DVB-s2).”
  276. 3GPP, “Chairman’s notes RAN1_87_7.1.5_final.”
  277. 3GPP, “ETSI TS 138 212 v17.4.0 (2023-01) - 5g; NR; multiplexing and channel coding (3gpp TS 38.212 version 17.4.0 release 17).”
  278. F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product algorithm,” vol. 47, no. 2, pp. 498–519.
  279. M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative decoding of low-density parity check codes based on belief propagation,” vol. 47, no. 5, pp. 673–680.
  280. E. Eleftheriou, T. Mittelholzer, and A. Dholakia, “Reduced-complexity decoding algorithm for low-density parity-check codes,” vol. 37, no. 2, pp. 102–104.
  281. X.-Y. Hu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia, “Efficient implementations of the sum-product algorithm for decoding LDPC codes,” in IEEE Global Telecommunications Conference, vol. 2, pp. 1036–1036E vol.2.
  282. J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X.-Y. Hu, “Reduced-complexity decoding of LDPC codes,” vol. 53, no. 8, pp. 1288–1299.
  283. J. Chen and M. Fossorier, “Near optimum universal belief propagation based decoding of low-density parity check codes,” vol. 50, no. 3, pp. 406–414.
  284. J. Chen, R. Tanner, C. Jones, and Y. Li, “Improved min-sum decoding algorithms for irregular LDPC codes,” in IEEE International Symposium on Information Theory, pp. 449–453.
  285. J. Chen and M. Fossorier, “Density evolution for two improved BP-based decoding algorithms of LDPC codes,” vol. 6, no. 5, pp. 208–210.
  286. J. Zhao, F. Zarkeshvari, and A. Banihashemi, “On implementation of min-sum algorithm and its modifications for decoding low-density parity-check (LDPC) codes,” vol. 53, no. 4, pp. 549–554.
  287. J. Zhang, M. Fossorier, D. Gu, and J. Zhang, “Two-dimensional correction for min-sum decoding of irregular LDPC codes,” vol. 10, no. 3, pp. 180–182.
  288. P. Kang, Y. Xie, L. Yang, C. Zheng, J. Yuan, and Y. Wei, “Enhanced quasi-maximum likelihood decoding of short LDPC codes based on saturation,” in IEEE Information Theory Workshop (ITW), pp. 1–5.
  289. P. Kang, Y. Xie, L. Yang, and J. Yuan, “Enhanced quasi-maximum likelihood decoding based on 2d modified min-sum algorithm for 5g LDPC codes,” vol. 68, no. 11, pp. 6669–6682.
  290. V. Savin, “Self-corrected min-sum decoding of LDPC codes,” in IEEE International Symposium on Information Theory, pp. 146–150.
  291. J. Andrade, G. Falcao, V. Silva, J. P. Barreto, N. Goncalves, and V. Savin, “Near-LSPA performance at MSA complexity,” in IEEE International Conference on Communications (ICC), pp. 3281–3285.
  292. E. Amador, V. Rezard, and R. Pacalet, “Energy efficiency of SISO algorithms for turbo-decoding message-passing LDPC decoders,” in 17th IFIP International Conference on Very Large Scale Integration (VLSI-SoC), pp. 95–100.
  293. E. Amador, R. Knopp, V. Rezard, and R. Pacalet, “Hybrid iteration control on LDPC decoders,” in 6th International Conference on Wireless and Mobile Communications, pp. 102–106.
  294. C. Jones, E. Valles, M. Smith, and J. Villasenor, “Approximate-MIN constraint node updating for LDPC code decoding,” in IEEE Military Communications Conference, vol. 1, pp. 157–162.
  295. T. J. Richardson, S. Kudekar, and V. Loncke, “Adjusted min-sum decoder,” patent 20 180 109 269.
  296. 3GPP, “LDPC decoding with adjusted min-sum.”
  297. T. Etzion, A. Trachtenberg, and A. Vardy, “Which codes have cycle-free tanner graphs?” vol. 45, no. 6, pp. 2173–2181.
  298. M. Fossorier and S. Lin, “Soft-decision decoding of linear block codes based on ordered statistics,” IEEE Transactions on Information Theory, vol. 41, no. 5, pp. 1379–1396, Sep. 1995.
  299. M. Fossorier, “Iterative reliability-based decoding of low-density parity check codes,” vol. 19, no. 5, pp. 908–917.
  300. N. Varnica, M. P. C. Fossorier, and A. Kavcic, “Augmented belief propagation decoding of low-density parity check codes,” vol. 55, no. 7, pp. 1308–1317.
  301. S. Scholl, P. Schläfer, and N. Wehn, “Saturated min-sum decoding: An “afterburner” for LDPC decoder hardware,” in Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1219–1224.
  302. S. Kudekar, T. J. Richardson, G. Sarkis, and V. Loncke, “Efficient list decoding of LDPC codes,” patentus 10 511 328, B2.
  303. B. Liu, Y. Xie, L. Yang, and J. Yuan, “An iterative soft-decision decoding algorithm with dynamic saturation for short reed-solomon codes,” in IEEE Information Theory Workshop (ITW), pp. 1–5.
  304. M. Borgerding, P. Schniter, and S. Rangan, “AMP-inspired deep networks for sparse linear inverse problems,” vol. 65, no. 16, pp. 4293–4308.
  305. A. Zappone, M. Di Renzo, and M. Debbah, “Wireless networks design in the era of deep learning: Model-based, AI-based, or both?” vol. 67, no. 10, pp. 7331–7376.
  306. H. He, C.-K. Wen, S. Jin, and G. Y. Li, “Model-driven deep learning for MIMO detection,” vol. 68, pp. 1702–1715.
  307. B. Liu, Z. Wei, W. Yuan, J. Yuan, and M. Pajovic, “Channel estimation and user identification with deep learning for massive machine-type communications,” vol. 70, no. 10, pp. 10 709–10 722.
  308. B. Liu, S. Li, Y. Xie, and J. Yuan, “A novel sum-product detection algorithm for faster-than-nyquist signaling: A deep learning approach,” vol. 69, no. 9, pp. 5975–5987.
  309. J. R. Hershey, J. L. Roux, and F. Weninger, “Deep unfolding: Model-based inspiration of novel deep architectures.”
  310. E. Nachmani, Y. Be’ery, and D. Burshtein, “Learning to decode linear codes using deep learning,” in 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 341–346.
  311. E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and Y. Be’ery, “Deep learning methods for improved decoding of linear codes,” vol. 12, no. 1, pp. 119–131.
  312. I. Be’Ery, N. Raviv, T. Raviv, and Y. Be’Ery, “Active deep decoding of linear codes,” vol. 68, no. 2, pp. 728–736.
  313. B. Liu, Y. Xie, and J. Yuan, “A deep learning assisted node-classified redundant decoding algorithm for BCH codes,” vol. 68, no. 9, pp. 5338–5349.
  314. A. Buchberger, C. Häger, H. D. Pfister, L. Schmalen, and A. G. i. Amat, “Learned decimation for neural belief propagation decoders : Invited paper,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8273–8277.
  315. X. Wu, M. Jiang, and C. Zhao, “Decoding optimization for 5g LDPC codes by machine learning,” vol. 6, pp. 50 179–50 186.
  316. B. Vasić, X. Xiao, and S. Lin, “Learning to decode LDPC codes with finite-alphabet message passing,” in Information Theory and Applications Workshop (ITA), pp. 1–9.
  317. L. Wang, S. Chen, J. Nguyen, D. Dariush, and R. Wesel, “Neural-network-optimized degree-specific weights for LDPC MinSum decoding,” in 11th International Symposium on Topics in Coding (ISTC), pp. 1–5.
  318. J. Dai, K. Tan, Z. Si, K. Niu, M. Chen, H. V. Poor, and S. Cui, “Learning to decode protograph LDPC codes,” vol. 39, no. 7, pp. 1983–1999.
  319. M. Sandell and A. Ismail, “Machine learning for LLR estimation in flash memory with LDPC codes,” vol. 68, no. 2, pp. 792–796.
  320. M. Geiselhart, A. Elkelesh, J. Clausius, F. Liang, W. Xu, J. Liang, and S. T. Brink, “Learning quantization in LDPC decoders,” in IEEE Globecom Workshops, pp. 467–472.
  321. M. Stark, L. Wang, G. Bauch, and R. D. Wesel, “Decoding rate-compatible 5g-LDPC codes with coarse quantization using the information bottleneck method,” vol. 1, pp. 646–660.
  322. A. Buchberger, C. Häger, H. D. Pfister, L. Schmalen, and A. Graell i Amat, “Pruning and quantizing neural belief propagation decoders,” vol. 39, no. 7, pp. 1957–1966.
  323. M. Davey and D. MacKay, “Low density parity check codes over GF(q),” in Information Theory Workshop, pp. 70–71.
  324. D. J. C. MacKay and M. C. Davey, “Evaluation of gallager codes for short block length and high rate applications,” in Codes, Systems, and Graphical Models, ser. The IMA Volumes in Mathematics and its Applications.   Springer, pp. 113–130.
  325. L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC over GF(2/sup q/),” in IEEE Information Theory Workshop, pp. 70–73.
  326. D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary LDPC codes over GF(q),” vol. 55, no. 4, pp. 633–643.
  327. V. Savin, “Min-max decoding for non binary LDPC codes,” in IEEE International Symposium on Information Theory, pp. 960–964.
  328. B. Liu, J. Gao, G. Dou, and W. Tao, “Weighted symbol-flipping decoding for nonbinary LDPC codes,” in 2nd International Conference on Networks Security, Wireless Communications and Trusted Computing, vol. 1, pp. 223–226.
  329. F. Garcia-Herrero, D. Declercq, and J. Valls, “Non-binary LDPC decoder based on symbol flipping with multiple votes,” vol. 18, no. 5, pp. 749–752.
  330. S. Wang, Q. Huang, and Z. Wang, “Symbol flipping decoding algorithms based on prediction for non-binary LDPC codes,” vol. 65, no. 5, pp. 1913–1924.
  331. Z. Zhao, X. Jiao, J. Mu, H. Han, and Y.-C. He, “Momentum-based symbol flipping decoding algorithms for non-binary LDPC codes,” vol. 72, no. 7, pp. 9579–9584.
  332. M.-R. Li, W.-X. Chu, H.-C. Lee, and Y.-L. Ueng, “An efficient high-rate non-binary LDPC decoder architecture with early termination,” vol. 7, pp. 20 302–20 315.
  333. V. B. Wijekoon, E. Viterbo, and Y. Hong, “Decoding of NB-LDPC codes over subfields,” vol. 69, no. 2, pp. 716–727.
  334. E. Ben Yacoub and G. Liva, “Trapping and absorbing set enumerators for nonbinary protograph-based low-density parity-check code ensembles,” vol. 71, no. 4, pp. 1847–1862.
  335. T. V. Nguyen, A. Nosratinia, and D. Divsalar, “The design of rate-compatible protograph LDPC codes,” vol. 60, no. 10, pp. 2841–2850.
  336. D. G. M. Mitchell, M. Lentmaier, and D. J. Costello, “New families of LDPC block codes formed by terminating irregular protograph-based LDPC convolutional codes,” in IEEE International Symposium on Information Theory, 2010, pp. 824–828.
  337. S. Johnson and G. Lechner, “Spatially coupled repeat-accumulate codes,” vol. 17, no. 2, pp. 373–376.
  338. M. Stinner and P. M. Olmos, “On the waterfall performance of finite-length SC-LDPC codes constructed from protographs,” vol. 34, no. 2, pp. 345–361.
  339. “ML simulation results - RPTU rheinland-pfälzische technische universität kaiserslautern-landau.”
  340. Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel coding rate in the finite blocklength regime,” vol. 56, no. 5, pp. 2307–2359.
  341. F. Kschischang and B. Frey, “Iterative decoding of compound codes by probability propagation in graphical models,” vol. 16, no. 2, pp. 219–230.
  342. D. Hocevar, “A reduced complexity decoder architecture via layered decoding of LDPC codes,” in IEEE Workshop on Signal Processing Systems (SIPS), pp. 107–112.
  343. A. I. V. Casado, M. Griot, and R. D. Wesel, “Informed dynamic scheduling for belief-propagation decoding of LDPC codes,” in IEEE International Conference on Communications, pp. 932–937.
  344. A. Darabiha, A. Carusone, and F. Kschischang, “A bit-serial approximate min-sum LDPC decoder and FPGA implementation,” in IEEE International Symposium on Circuits and Systems, pp. 149–152.
  345. P. Schläfer, N. Wehn, M. Alles, and T. Lehnigk-Emden, “A new dimension of parallelism in ultra high throughput LDPC decoding,” in IEEE Workshop on Signal Processing Systems (SIPS), pp. 153–158.
  346. Y. Chen and K. Parhi, “Overlapped message passing for quasi-cyclic low-density parity check codes,” vol. 51, no. 6, pp. 1106–1113.
  347. Z. Wang and Z. Cui, “A memory efficient partially parallel decoder architecture for quasi-cyclic LDPC codes,” vol. 15, no. 4, pp. 483–488.
  348. X. Chen, Q. Huang, S. Lin, and V. Akella, “FPGA-based low-complexity high-throughput tri-mode decoder for quasi-cyclic LDPC codes,” in 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 600–606.
  349. X. Chen, J. Kang, S. Lin, and V. Akella, “Memory system optimization for FPGA-based implementation of quasi-cyclic LDPC codes decoders,” vol. 58, no. 1, pp. 98–111.
  350. S. Nimara, O. Boncalo, A. Amaricai, and M. Popa, “FPGA architecture of multi-codeword LDPC decoder with efficient BRAM utilization,” in IEEE 19th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS), pp. 1–4.
  351. V. E. Beneš, “Optimal rearrangeable multistage connecting networks,” vol. 43, no. 4, pp. 1641–1656.
  352. D. Oh and K. K. Parhi, “Low-complexity switch network for reconfigurable LDPC decoders,” vol. 18, no. 1, pp. 85–94.
  353. X. Chen, S. Lin, and V. Akella, “QSN—a simple circular-shift network for reconfigurable quasi-cyclic LDPC decoders,” vol. 57, no. 10, pp. 782–786.
  354. S. Shao, P. Hailes, T.-Y. Wang, J.-Y. Wu, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, “Survey of turbo, LDPC, and polar decoder ASIC implementations,” vol. 21, no. 3, pp. 2309–2333.
  355. M. Li, V. Derudder, K. Bertrand, C. Desset, and A. Bourdoux, “High-speed LDPC decoders towards 1 tb/s,” vol. 68, no. 5, pp. 2224–2233.
  356. L. Lopacinski, A. Hasani, G. Panic, N. Maletic, O. Schrape, J. Gutiérrez, M. Krstic, and E. Grass, “Ultra High-Speed BP Decoder for Polar Codes achieving 1.4 Tbps in 28 nm CMOS,” in 2022 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Jun. 2022, pp. 434–439, iSSN: 2575-4912.
  357. L. Lopacinski, A. Hasani, G. Panic, N. Maletic, J. Gutiérrez, M. Krstic, E. Grass, and R. Kraemer, “A hardware optimized high throughput LDPC decoder supporting 3 tb/s in 28 nm CMOS,” in IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1326–1331.
  358. K. Cushon, P. Larsson-Edefors, and P. Andrekson, “Low-power 400-gbps soft-decision LDPC FEC for optical transport networks,” vol. 34, no. 18, pp. 4304–4311.
  359. R. Ghanaatian, A. Balatsoukas-Stimming, T. C. Müller, M. Meidlinger, G. Matz, A. Teman, and A. Burg, “A 588-gb/s LDPC decoder based on finite-alphabet message passing,” vol. 26, no. 2, pp. 329–340.
  360. S. Lee, S. Park, B. Jang, and I.-C. Park, “Multi-mode QC-LDPC decoding architecture with novel memory access scheduling for 5g new-radio standard,” vol. 69, no. 5, pp. 2035–2048.
  361. “Enabling practical wireless tb/s communications with next generation channel coding -EPIC project - fact sheet - h2020.”
  362. R. Peng and R.-R. Chen, “WLC45-2: Application of nonbinary LDPC codes for communication over fading channels using higher order modulations,” in IEEE Globecom 2006, pp. 1–5.
  363. X. Chen and C.-L. Wang, “High-throughput efficient non-binary LDPC decoder based on the simplified min-sum algorithm,” vol. 59, no. 11, pp. 2784–2794.
  364. D. Feng, H. Xu, J. Zheng, and B. Bai, “Nonbinary LDPC-coded spatial modulation,” vol. 17, no. 4, pp. 2786–2799.
  365. C.-X. Wang, X. You, X. Gao, X. Zhu, Z. Li, C. Zhang, H. Wang, Y. Huang, Y. Chen, H. Haas, J. S. Thompson, E. G. Larsson, M. D. Renzo, W. Tong, P. Zhu, X. Shen, H. V. Poor, and L. Hanzo, “On the road to 6g: Visions, requirements, key technologies, and testbeds,” vol. 25, no. 2, pp. 905–974.
  366. C. Condo, M. Martina, and G. Masera, “VLSI implementation of a multi-mode turbo/LDPC decoder architecture,” vol. 60, no. 6, pp. 1441–1454.
  367. S. Cao, T. Lin, S. Zhang, S. Xu, and C. Zhang, “A reconfigurable and pipelined architecture for standard-compatible LDPC and polar decoding,” vol. 70, no. 6, pp. 5431–5444.
  368. Y. Wang, Z. Zhang, S. Zhang, S. Cao, and S. Xu, “A unified deep learning based polar-LDPC decoder for 5g communication systems,” in 10th International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–6.
  369. E. Arı kan, “Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels,” IEEE Transactions on information Theory, vol. 55, no. 7, pp. 3051–3073, 2009.
  370. E. Arıkan, “On the origin of polar coding,” IEEE journal on Selected Areas in Communications, vol. 34, no. 2, pp. 209–223, 2015.
  371. J. Massey, “Capacity, cutoff rate, and coding for a direct-detection optical channel,” IEEE Transactions on Communications, vol. 29, no. 11, pp. 1615–1621, 1981.
  372. M. S. Pinsker, “On the complexity of decoding,” Problemy Peredachi Informatsii, vol. 1, no. 1, pp. 113–116, 1965.
  373. H. Imai and S. Hirakawa, “A new multilevel coding method using error-correcting codes,” IEEE Transactions on Information Theory, vol. 23, no. 3, pp. 371–377, 1977.
  374. N. Goela, S. B. Korada, and M. Gastpar, “On lp decoding of polar codes,” in 2010 IEEE Information Theory Workshop.   IEEE, 2010, pp. 1–5.
  375. G. D. Forney, “Codes on graphs: Normal realizations,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 520–548, 2001.
  376. N. Hussami, S. B. Korada, and R. Urbanke, “Performance of polar codes for channel and source coding,” in 2009 IEEE International Symposium on Information Theory.   IEEE, 2009, pp. 1488–1492.
  377. M. Rowshan, S. H. Dau, and E. Viterbo, “Error coefficient-reduced polar/pac codes,” arXiv preprint arXiv:2111.08843, 2021.
  378. ——, “On the formation of min-weight codewords of polar/pac codes and its applications,” IEEE Transactions on Information Theory, vol. 69, no. 12, pp. 7627–7649, 2023.
  379. ——, “Error Coefficient-reduced Polar/PAC Codes,” Nov. 2021, arXiv:2111.08843. [Online]. Available: http://arxiv.org/abs/2111.08843
  380. M. Bardet, J. Chaulet, V. Dragoi, A. Otmani, and J.-P. Tillich, “Cryptanalysis of the mceliece public key cryptosystem based on polar codes,” in Post-Quantum Cryptography: 7th International Workshop, PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016, Proceedings 7.   Springer, 2016, pp. 118–143.
  381. M. Bardet, V. Dragoi, A. Otmani, and J.-P. Tillich, “Algebraic properties of polar codes from a new polynomial formalism,” in 2016 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2016, pp. 230–234.
  382. E. Arikan and E. Telatar, “On the rate of channel polarization,” in 2009 IEEE International Symposium on Information Theory.   IEEE, 2009, pp. 1493–1495.
  383. S. B. Korada, E. Şaşoğlu, and R. Urbanke, “Polar codes: Characterization of exponent, bounds, and constructions,” IEEE Transactions on Information Theory, vol. 56, no. 12, pp. 6253–6264, 2010.
  384. M.-K. Lee and K. Yang, “The exponent of a polarizing matrix constructed from the kronecker product,” Designs, codes and cryptography, vol. 70, pp. 313–322, 2014.
  385. E. Arikan, “A survey of reed-muller codes from polar coding perspective,” in 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).   IEEE, 2010, pp. 1–5.
  386. R. Mori and T. Tanaka, “Performance of polar codes with the construction using density evolution,” IEEE Communications Letters, vol. 13, no. 7, pp. 519–521, 2009.
  387. C. Hartmann and L. Rudolph, “An optimum symbol-by-symbol decoding rule for linear codes,” IEEE Transactions on Information Theory, vol. 22, no. 5, pp. 514–517, 1976.
  388. G. Battail, M. Decouvelaere, and P. Godlewski, “Replication decoding,” IEEE Transactions on Information Theory, vol. 25, no. 3, pp. 332–345, 1979.
  389. J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and convolutional codes,” IEEE Transactions on information theory, vol. 42, no. 2, pp. 429–445, 1996.
  390. M. Luby, M. Mitzenmacher, A. Shokrollah, and D. Spielman, “Analysis of low density codes and improved designs using irregular graphs,” in Proceedings of the thirtieth annual ACM symposium on Theory of computing, 1998, pp. 249–258.
  391. I. Tal and A. Vardy, “How to construct polar codes,” IEEE Transactions on Information Theory, vol. 59, no. 10, pp. 6562–6582, 2013.
  392. S.-Y. Chung, T. J. Richardson, and R. L. Urbanke, “Analysis of sum-product decoding of low-density parity-check codes using a gaussian approximation,” IEEE Transactions on Information theory, vol. 47, no. 2, pp. 657–670, 2001.
  393. S. B. Korada, A. Montanari, E. Telatar, and R. Urbanke, “An empirical scaling law for polar codes,” in 2010 IEEE International Symposium on Information Theory.   IEEE, 2010, pp. 884–888.
  394. P. Trifonov, “Efficient design and decoding of polar codes,” IEEE transactions on communications, vol. 60, no. 11, pp. 3221–3227, 2012.
  395. C. Schürch, “A partial order for the synthesized channels of a polar code,” in 2016 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2016, pp. 220–224.
  396. G. He, J.-C. Belfiore, I. Land, G. Yang, X. Liu, Y. Chen, R. Li, J. Wang, Y. Ge, R. Zhang et al., “Beta-expansion: A theoretical framework for fast and recursive construction of polar codes,” in GLOBECOM 2017-2017 IEEE Global Communications Conference.   IEEE, 2017, pp. 1–6.
  397. H. Huawei, “Polar code design and rate matching,” in 3GPP TSG RAN WG1 Meeting, vol. 86, 2016, pp. R1–167 209.
  398. “5G; NR; Multiplexing and channel coding,” 3GPP, France, Jul. 2020.
  399. M. Rowshan, A. Burg, and E. Viterbo, “Polarization-adjusted convolutional (pac) codes: Sequential decoding vs list decoding,” IEEE Transactions on Vehicular Technology, vol. 70, no. 2, pp. 1434–1447, 2021.
  400. X. Gu, M. Rowshan, and J. Yuan, “Rate-compatible shortened pac codes,” in 2023 IEEE/CIC International Conference on Communications in China (ICCC Workshops).   IEEE, 2023, pp. 1–6.
  401. B. Li, H. Shen, and D. Tse, “A RM-Polar Codes,” Jul. 2014. [Online]. Available: https://arxiv.org/abs/1407.5483v1
  402. Z. Cai, L. Chen, W. Liu, and H. Zhang, “Modified pac codes,” in 2023 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2023, pp. 1908–1913.
  403. M. Rowshan, S. H. Dau, and E. Viterbo, “Improving the error coefficient of polar codes,” in 2022 IEEE Information Theory Workshop (ITW).   IEEE, 2022, pp. 249–254.
  404. M. Rowshan and E. Viterbo, “How to modify polar codes for list decoding,” in 2019 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2019, pp. 1772–1776.
  405. ——, “Stepped list decoding for polar codes,” in 2018 IEEE 10th International Symposium on Turbo Codes & Iterative Information Processing (ISTC).   IEEE, 2023, pp. 1–5.
  406. P. Trifonov and V. Miloslavskaya, “Polar codes with dynamic frozen symbols and their decoding by directed search,” in 2013 IEEE Information Theory Workshop (ITW).   IEEE, 2013, pp. 1–5.
  407. X. Wu, L. Yang, and J. Yuan, “Information coupled polar codes,” in 2018 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2018, pp. 861–865.
  408. X. Wu, L. Yang, Y. Xie, and J. Yuan, “Partially information coupled polar codes,” IEEE Access, vol. 6, pp. 63 689–63 702, 2018.
  409. X. Wu, M. Qiu, and J. Yuan, “Partially information coupled bit-interleaved polar coded modulation,” IEEE Transactions on Communications, vol. 69, no. 10, pp. 6409–6423, 2021.
  410. K.-H. Wang, W. Hou, S. Lu, P.-Y. Wu, Y.-L. Ueng, and J. Cheng, “Improving polar codes by spatial coupling,” in 2018 International Symposium on Information Theory and Its Applications (ISITA).   IEEE, 2018, pp. 432–436.
  411. E. Arıkan, “From sequential decoding to channel polarization and back again,” arXiv preprint arXiv:1908.09594, 2019.
  412. M. Rowshan, A. Burg, and E. Viterbo, “Polarization-Adjusted Convolutional (PAC) Codes: Sequential Decoding vs List Decoding,” IEEE Trans. Veh. Technol., vol. 70, no. 2, pp. 1434–1447, Feb. 2021.
  413. M. Rowshan and E. Viterbo, “On Convolutional Precoding in PAC Codes,” in Proc. IEEE Globecom Workshops (GC Wkshps), Dec. 2021, pp. 1–6.
  414. M. Rowshan and J. Yuan, “Fast Enumeration of Minimum Weight Codewords of PAC Codes,” in Proc. IEEE Inf. Theory Workshop (ITW), Nov. 2022, pp. 255–260.
  415. ——, “On the minimum weight codewords of pac codes: The impact of pre-transformation,” IEEE Journal on Selected Areas in Information Theory, vol. 4, pp. 487–498.
  416. M. Rowshan, A. Burg, and E. Viterbo, “Complexity-efficient fano decoding of polarization-adjusted convolutional (pac) codes,” in 2020 International Symposium on Information Theory and Its Applications (ISITA).   IEEE, 2020, pp. 200–204.
  417. M. Rowshan, “Towards enhanced decoding of polar codes and pac codes,” Ph.D. dissertation, Monash University, 2021.
  418. A. Mozammel, “Hardware implementation of fano decoder for polarization-adjusted convolutional (pac) codes,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 3, pp. 1632–1636, 2021.
  419. H. Yao, A. Fazeli, and A. Vardy, “List decoding of arıkan’s pac codes,” Entropy, vol. 23, no. 7, p. 841, 2021.
  420. M. Rowshan and E. Viterbo, “List viterbi decoding of pac codes,” IEEE Transactions on Vehicular Technology, vol. 70, no. 3, pp. 2428–2435, 2021.
  421. X. Zhang, M. Jiang, M. Zhu, K. Liu, and C. Zhao, “Crc-aided adaptive bp decoding of pac codes,” Entropy, vol. 24, no. 8, p. 1170, 2022.
  422. M. Rowshan and J. Yuan, “Constrained error pattern generation for grand,” in 2022 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2022, pp. 1767–1772.
  423. ——, “Segmented grand: Combining sub-patterns in near-ml order,” arXiv preprint arXiv:2305.14892, 2023.
  424. Y. Wang, Z. Shi, Z. Han, Z. Wei, and K. Li, “Improved orb-grand for pac codes,” in 2023 8th International Conference on Communication, Image and Signal Processing (CCISP), 2023, pp. 477–481.
  425. Z. Jiang, Z. Huang, Y. Zhang, and B. Zhou, “A soft-output stack decoding of polarization-adjusted convolutional codes,” in International Conference on Cryptography, Network Security, and Communication Technology (CNSCT 2023), vol. 12641.   SPIE, 2023, pp. 272–279.
  426. Y. Wu, Z. Huang, Y. Zhang, and S. Zhou, “Multi-stack decoding algorithm for polarization-adjusted convolutional codes,” in 2023 3rd International Conference on Electronic Information Engineering and Computer Science (EIECS).   IEEE, 2023, pp. 1194–1197.
  427. L. Zhang, H. Liu, and Y. He, “Improved stack decoding for pac codes,” in 2023 32nd Wireless and Optical Communications Conference (WOCC), 2023, pp. 1–5.
  428. H. Saber, H. Hatami, and J. H. Bae, “Simplified successive cancellation list decoding of pac codes,” arXiv preprint arXiv:2401.13922, 2024.
  429. J. Dai, H. Yin, Y. Lv, Y. Wang, and R. Lv, “Fast list decoding of pac codes with new nodes,” IEEE Communications Letters, 2024.
  430. Q. Yu and Z. Shi, “Threshold-based list decoding for pac codes,” in 2021 IEEE 21st International Conference on Communication Technology (ICCT).   IEEE, 2021, pp. 1296–1299.
  431. W. Zhang, “A novel scl bit-flipping decoding of polarization-adjusted convolutional (pac) codes,” arXiv preprint arXiv:2307.05871, 2023.
  432. X. Gu, M. Rowshan, and J. Yuan, “Selective reverse pac coding for sphere decoding,” arXiv preprint arXiv:2212.00254, 2022.
  433. ——, “Improved convolutional precoder for pac codes,” in GLOBECOM 2023-2023 IEEE Global Communications Conference.   IEEE, 2023, pp. 1836–1841.
  434. B. Feng, Y. Yang, J. Jiao, and Q. Zhang, “On tail-biting polarization-adjusted convolutional (tb-pac) codes and small-sizes list decoding,” IEEE Communications Letters, vol. 27, no. 2, pp. 433–437, 2022.
  435. S. Gelincik, P. Mary, A. Savard, and J.-Y. Baudais, “A pre-transformation method to increase the minimum distance of polar-like codes,” arXiv preprint arXiv:2202.04366, 2022.
  436. A. Zunker, M. Geiselhart, L. Johannsen, C. Kestel, S. ten Brink, T. Vogt, and N. Wehn, “Row-merged polar codes: Analysis, design and decoder implementation,” 2023.
  437. S. Ying, S. Jin, and Z. Zhang, “A spatially coupled pac coding scheme and its list decoding,” in 2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops).   IEEE, 2022, pp. 82–87.
  438. Q. YU, Y. ZHANG, R. LUO, L. WANG, and X. LI, “Parity-check polarization-adjusted convolutional coding,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. 107, no. 2, pp. 187–191, 2024.
  439. S. K. Mishra and K. Kim, “Selectively precoded polar codes,” arXiv preprint arXiv:2011.04930, 2020.
  440. G. Choi and N. Lee, “Deep polar codes,” arXiv preprint arXiv:2308.03004, 2023.
  441. A. Liu, B. Feng, C. Liang, J. Xu, and Q. Zhang, “A novel hamming check concatenated polarization-adjusted convolutional (pac) codes,” in 2023 IEEE/CIC International Conference on Communications in China (ICCC).   IEEE, 2023, pp. 1–5.
  442. H. Wan, J. Cho, and C. J. Zhang, “Polar codes with enhanced weight distribution,” in 2023 IEEE Globecom Workshops (GC Wkshps), 2023, pp. 1237–1242.
  443. M. Abdullah and W. H. Mow, “New search for the polarization-adjusted convolutional codes with respect to the afer-optimality criterion,” in 2023 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2023, pp. 1723–1728.
  444. S. K. Mishra, D. Katyal, and S. A. Ganapathi, “A heuristic algorithm for rate-profiling of polarization adjusted convolutional (pac) codes,” Authorea Preprints, 2023.
  445. W. Liu, L. Chen, and X. Liu, “A weighted sum based construction of pac codes,” IEEE Communications Letters, vol. 27, no. 1, pp. 28–31, 2023.
  446. M.-C. Chiu and Y.-S. Su, “Design of polar codes and pac codes for scl decoding,” IEEE Transactions on Communications, vol. 71, no. 5, pp. 2587–2601, 2023.
  447. H. Sun, E. Viterbo, and R. Liu, “Optimized rate-profiling for pac codes,” 2021.
  448. E. Arıkan, “Systematic encoding and shortening of pac codes,” Entropy, vol. 22, no. 11, 2020. [Online]. Available: https://www.mdpi.com/1099-4300/22/11/1301
  449. X. Zhang, M. Jiang, M. Zhu, C. Zhao, and L. Hu, “Rate-compatible puncturing and shortening of short pac codes for 6g urllc,” in 2023 IEEE 24th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).   IEEE, 2023, pp. 301–305.
  450. Z. Qiu and Y. He, “Construction of shortened systematic pac codes based on monte-carlo algorithm,” in 2023 32nd Wireless and Optical Communications Conference (WOCC).   IEEE, 2023, pp. 1–5.
  451. S. Jiang, J. Wang, C. Xia, and X. Li, “Construction of pac codes with list-search and path-splitting critical sets,” arXiv preprint arXiv:2304.11554, 2023.
  452. Z. Sun, D. Lin, Y. Xiao, and M. Xiao, “An efficient construction of polarization-adjusted convolutional codes,” in 2023 IEEE Globecom Workshops (GC Wkshps), 2023, pp. 1243–1248.
  453. H. Sun, E. Viterbo, and R. Liu, “Analysis of polarization-adjusted convolutional codes (pac): A source-channel coding method,” in 2021 IEEE Globecom Workshops (GC Wkshps), 2021, pp. 1–6.
  454. T. Kann, S. Kudekar, and M. Bloch, “Source polarization-adjusted convolutional codes,” in 2023 IEEE International Symposium on Information Theory (ISIT), 2023, pp. 1896–1901.
  455. ——, “Source polarization-adjusted convolutional codes,” in 2023 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2023, pp. 1896–1901.
  456. M. Zheng and C. Ling, “Pac codes for source and joint source-channel coding,” arXiv preprint arXiv:2308.05472, 2023.
  457. R. Mori and T. Tanaka, “Non-binary polar codes using reed-solomon codes and algebraic geometry codes,” in 2010 IEEE Information Theory Workshop.   IEEE, 2010, pp. 1–5.
  458. S. E. Anderson and G. L. Matthews, “Exponents of polar codes using algebraic geometric code kernels,” Designs, codes and cryptography, vol. 73, pp. 699–717, 2014.
  459. A. Eid and I. Duursma, “Using concatenated algebraic geometry codes in channel polarization [online] available,” arXiv preprint arXiv:1310.7159, 2013.
  460. N. Presman, O. Shapira, S. Litsyn, T. Etzion, and A. Vardy, “Binary polarization kernels from code decompositions,” IEEE Transactions on Information Theory, vol. 61, no. 5, pp. 2227–2239, 2015.
  461. H.-P. Lin, S. Lin, and K. A. Abdel-Ghaffar, “Linear and nonlinear binary kernels of polar codes of small dimensions with maximum exponents,” IEEE Transactions on Information Theory, vol. 61, no. 10, pp. 5253–5270, 2015.
  462. G. Trofimiuk and P. Trifonov, “Window processing of binary polarization kernels,” IEEE Transactions on Communications, vol. 69, no. 7, pp. 4294–4305, 2021.
  463. P. Trifonov, “Binary successive cancellation decoding of polar codes with reed-solomon kernel,” in 2014 IEEE International Symposium on Information Theory.   IEEE, 2014, pp. 2972–2976.
  464. F. Abbasi and E. Viterbo, “Large kernel polar codes with efficient window decoding,” IEEE Transactions On Vehicular Technology, vol. 69, no. 11, pp. 14 031–14 036, 2020.
  465. N. Presman, O. Shapira, and S. Litsyn, “Mixed-kernels constructions of polar codes,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 2, pp. 239–253, 2015.
  466. V. Bioglio, F. Gabry, I. Land, and J.-C. Belfiore, “Multi-kernel polar codes: Concept and design principles,” IEEE Transactions on Communications, vol. 68, no. 9, pp. 5350–5362, 2020.
  467. M. Benammar, V. Bioglio, F. Gabry, and I. Land, “Multi-kernel polar codes: Proof of polarization and error exponents,” in 2017 IEEE Information Theory Workshop (ITW).   IEEE, 2017, pp. 101–105.
  468. G. Schnabl and M. Bossert, “Soft-decision decoding of reed-muller codes as generalized multiple concatenated codes,” IEEE transactions on information theory, vol. 41, no. 1, pp. 304–308, 1995.
  469. R. Gallager, “Low-density parity-check codes,” IRE Transactions on information theory, vol. 8, no. 1, pp. 21–28, 1962.
  470. E. Arıkan, “Polar codes: A pipelined implementation,” in Proc. 4th ISBC, vol. 2010, 2010, pp. 11–14.
  471. I. Tal and A. Vardy, “List decoding of polar codes,” IEEE transactions on information theory, vol. 61, no. 5, pp. 2213–2226, 2015.
  472. I. Dumer and K. Shabunov, “Soft-decision decoding of reed-muller codes: recursive lists,” IEEE Transactions on information theory, vol. 52, no. 3, pp. 1260–1266, 2006.
  473. R. Lucas, M. Bossert, and A. Dammann, “Improved soft-decision decoding of reed-muller codes as generalized multiple concatenated codes,” ITG FACHBERICHT, pp. 137–142, 1998.
  474. K. Niu and K. Chen, “Crc-aided decoding of polar codes,” IEEE communications letters, vol. 16, no. 10, pp. 1668–1671, 2012.
  475. G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast polar decoders: Algorithm and implementation,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 5, pp. 946–957, 2014.
  476. M. Hanif and M. Ardakani, “Fast successive-cancellation decoding of polar codes: Identification and decoding of new nodes,” IEEE Communications Letters, vol. 21, no. 11, pp. 2360–2363, 2017.
  477. Y. Ren, A. T. Kristensen, Y. Shen, A. Balatsoukas-Stimming, C. Zhang, and A. Burg, “A sequence repetition node-based successive cancellation list decoder for 5g polar codes: Algorithm and implementation,” IEEE Transactions on Signal Processing, vol. 70, pp. 5592–5607, 2022.
  478. S. A. Hashemi, C. Condo, and W. J. Gross, “List sphere decoding of polar codes,” in 2015 49th Asilomar Conference on Signals, Systems and Computers.   IEEE, 2015, pp. 1346–1350.
  479. A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-cancellation decoder for polar codes,” IEEE communications letters, vol. 15, no. 12, pp. 1378–1380, 2011.
  480. O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, “A low-complexity improved successive cancellation decoder for polar codes,” in 2014 48th Asilomar Conference on Signals, Systems and Computers.   IEEE, 2014, pp. 2116–2120.
  481. L. Chandesris, V. Savin, and D. Declercq, “Dynamic-scflip decoding of polar codes,” IEEE Transactions on Communications, vol. 66, no. 6, pp. 2333–2345, 2018.
  482. M. Rowshan and E. Viterbo, “Improved list decoding of polar codes by shifted-pruning,” in 2019 IEEE Information Theory Workshop (ITW).   IEEE, 2019, pp. 1–5.
  483. ——, “Efficient partial rewind of successive cancellation-based decoders for polar codes,” IEEE Transactions on Communications, vol. 70, no. 11, pp. 7160–7168, 2022.
  484. ——, “Sc list-flip decoding of polar codes by shifted pruning: A general approach,” Entropy, vol. 24, no. 9, p. 1210, 2022.
  485. ——, “Shifted pruning for path recovery in list decoding of polar codes,” in 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC).   IEEE, 2021, pp. 1179–1184.
  486. F. Cheng, A. Liu, Y. Zhang, and J. Ren, “Bit-flip algorithm for successive cancellation list decoder of polar codes,” IEEE Access, vol. 7, pp. 58 346–58 352, 2019.
  487. Y. Lv, H. Yin, and Y. Wang, “An adaptive ordered shifted-pruning list decoder for polar codes,” IEEE Access, vol. 8, pp. 225 181–225 190, 2020.
  488. Y. Shen, A. Balatsoukas-Stimming, X. You, C. Zhang, and A. P. Burg, “Dynamic scl decoder with path-flipping for 5g polar codes,” IEEE Wireless Communications Letters, vol. 11, no. 2, pp. 391–395, 2022.
  489. F. Ivanov, V. Morishnik, and E. Krouk, “Improved generalized successive cancellation list flip decoder of polar codes with fast decoding of special nodes,” Journal of Communications and Networks, vol. 23, no. 6, pp. 417–432, 2021.
  490. H. Liu, J. Sha, and X. Wang, “An improved critical set for list decoding of polar codes,” IEEE Communications Letters, vol. 27, no. 9, pp. 2269–2273, 2023.
  491. Y. Lv, H. Yin, Z. Yang, Y. Wang, J. Dai, and J. Huan, “On the performance of generalized scl- flip decoding for polar codes,” in 2021 2nd Asia Symposium on Signal Processing (ASSP), 2021, pp. 148–152.
  492. W. Zhang and X. Wu, “Low-latency scl bit-flipping decoding of polar codes,” in ICC 2023 - IEEE International Conference on Communications, 2023, pp. 132–135.
  493. Y. Lv, H. Yin, Z. Yang, Y. Wang, and J. Dai, “Adaptive list flip decoder for polar codes with high-order error correction capability and a simplified flip metric,” Entropy, vol. 24, no. 12, 2022. [Online]. Available: https://www.mdpi.com/1099-4300/24/12/1806
  494. Y. Lu, M. Zhao, M. Lei, C. Wang, and M. Zhao, “Deep learning aided scl decoding of polar codes with shifted-pruning,” China Communications, vol. 20, no. 1, pp. 153–170, 2023.
  495. M. Rowshan, E. Viterbo, R. Micheloni, and A. Marelli, “Repetition-assisted decoding of polar codes,” Electronics Letters, vol. 55, no. 5, pp. 270–272, 2019.
  496. X. Wang, H. Zhang, J. Tong, J. Wang, J. Ma, and W. Tong, “Perturbation-enhanced scl decoder for polar codes,” in 2023 IEEE Globecom Workshops (GC Wkshps), 2023, pp. 1674–1679.
  497. M. Geiselhart, A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “Automorphism ensemble decoding of reed–muller codes,” IEEE Transactions on Communications, vol. 69, no. 10, pp. 6424–6438, 2021.
  498. T. Hehn, O. Milenkovic, S. Laendner, and J. B. Huber, “Permutation decoding and the stopping redundancy hierarchy of cyclic and extended cyclic codes,” IEEE Transactions on Information Theory, vol. 54, no. 12, pp. 5308–5331, 2008.
  499. Y. Li, H. Zhang, R. Li, J. Wang, W. Tong, G. Yan, and Z. Ma, “The complete affine automorphism group of polar codes,” in 2021 IEEE Global Communications Conference (GLOBECOM).   IEEE, 2021, pp. 01–06.
  500. C. Pillet, V. Bioglio, and I. Land, “Classification of automorphisms for the decoding of polar codes,” in ICC 2022-IEEE International Conference on Communications.   IEEE, 2022, pp. 110–115.
  501. U. U. Fayyaz and J. R. Barry, “Low-complexity soft-output decoding of polar codes,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 5, pp. 958–966, 2014.
  502. J. Massey, “Variable-length codes and the fano metric,” IEEE Transactions on Information Theory, vol. 18, no. 1, pp. 196–198, 1972.
  503. M.-O. Jeong and S.-N. Hong, “Sc-fano decoding of polar codes,” IEEE Access, vol. 7, pp. 81 682–81 690, 2019.
  504. I. Timokhin and F. Ivanov, “On the improvements of successive cancellation creeper decoding for polar codes,” Digital Signal Processing, vol. 137, p. 104008, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1051200423001033
  505. F. Jelinek, “Fast sequential decoding algorithm using a stack,” IBM journal of research and development, vol. 13, no. 6, pp. 675–685, 1969.
  506. K. Niu and K. Chen, “Stack decoding of polar codes,” Electronics letters, vol. 48, no. 12, pp. 695–697, 2012.
  507. M. Pohst, “On the computation of lattice vectors of minimal length, successive minima and reduced bases with applications,” ACM Sigsam Bulletin, vol. 15, no. 1, pp. 37–44, 1981.
  508. S. Kahraman and M. E. Çelebi, “Code based efficient maximum-likelihood decoding of short polar codes,” in 2012 IEEE International Symposium on Information Theory Proceedings.   IEEE, 2012, pp. 1967–1971.
  509. M. P. Fossorier and S. Lin, “Soft-decision decoding of linear block codes based on ordered statistics,” IEEE Transactions on Information Theory, vol. 41, no. 5, pp. 1379–1396, 1995.
  510. D. Wu, Y. Li, X. Guo, and Y. Sun, “Ordered statistic decoding for short polar codes,” IEEE Communications Letters, vol. 20, no. 6, pp. 1064–1067, 2016.
  511. K. R. Duffy, W. An, and M. Médard, “Ordered reliability bits guessing random additive noise decoding,” IEEE Transactions on Signal Processing, vol. 70, pp. 4528–4542, 2022.
  512. D.-M. Shin, S.-C. Lim, and K. Yang, “Design of length-compatible polar codes based on the reduction of polarizing matrices,” IEEE Transactions on Communications, vol. 61, no. 7, pp. 2593–2599, 2013.
  513. V. Bioglio, F. Gabry, and I. Land, “Low-Complexity Puncturing and Shortening of Polar Codes,” in Proc. IEEE Wireless Commun. Netw. Conf. Workshops (WCNCW), Mar. 2017, pp. 1–6.
  514. Z. B. K. Egilmez, L. Xiang, R. G. Maunder, and L. Hanzo, “The development, operation and performance of the 5g polar codes,” IEEE Communications Surveys & Tutorials, vol. 22, no. 1, pp. 96–122, 2019.
  515. M. Seidl, A. Schenk, C. Stierstorfer, and J. B. Huber, “Polar-coded modulation,” IEEE Transactions on Communications, vol. 61, no. 10, pp. 4108–4119, 2013.
  516. U. Wachsmann, R. F. Fischer, and J. B. Huber, “Multilevel codes: Theoretical concepts and practical design rules,” IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1361–1391, 1999.
  517. X. Wu, M. Qiu, and J. Yuan, “Delayed bit-interleaved polar coded modulation with superposition gray labeling,” in 2021 IEEE Globecom Workshops (GC Wkshps).   IEEE, 2021, pp. 1–6.
  518. C. Leroux, A. J. Raymond, G. Sarkis, I. Tal, A. Vardy, and W. J. Gross, “Hardware implementation of successive-cancellation decoders for polar codes,” Journal of Signal Processing Systems, vol. 69, pp. 305–315, 2012.
  519. C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel successive-cancellation decoder for polar codes,” IEEE Transactions on Signal Processing, vol. 61, no. 2, pp. 289–299, 2012.
  520. O. Dizdar and E. Arıkan, “A high-throughput energy-efficient implementation of successive cancellation decoder for polar codes using combinational logic,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 3, pp. 436–447, 2016.
  521. B. Yuan and K. K. Parhi, “Low-latency successive-cancellation polar decoder architectures using 2-bit decoding,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 4, pp. 1241–1254, 2013.
  522. F. Ercan, C. Condo, and W. J. Gross, “Reduced-memory high-throughput fast-ssc polar code decoder architecture,” in 2017 IEEE International Workshop on Signal Processing Systems (SiPS), 2017, pp. 1–6.
  523. H. Rezaei, V. Ranasinghe, N. Rajatheva, M. Latva-aho, G. Park, and O.-S. Park, “Implementation of ultra-fast polar decoders,” in 2022 IEEE International Conference on Communications Workshops (ICC Workshops), 2022, pp. 235–241.
  524. H. Zheng, A. Balatsoukas-Stimming, Z. Cao, and T. Koonen, “Implementation of a high-throughput fast-ssc polar decoder with sequence repetition node,” in 2020 IEEE Workshop on Signal Processing Systems (SiPS), 2020, pp. 1–6.
  525. F. Ercan, T. Tonnellier, and W. J. Gross, “Energy-efficient hardware architectures for fast polar decoders,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 1, pp. 322–335, 2020.
  526. F. Ercan, T. Tonnellier, N. Doan, and W. J. Gross, “Practical dynamic sc-flip polar decoders: Algorithm and implementation,” IEEE Transactions on Signal Processing, vol. 68, pp. 5441–5456, 2020.
  527. J. Zeng, Y. Zhou, J. Lin, and Z. Wang, “Hardware implementation of improved fast-ssc-flip decoder for polar codes,” in 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2019, pp. 580–585.
  528. G. Berhault, C. Leroux, C. Jego, and D. Dallet, “Hardware implementation of a soft cancellation decoder for polar codes,” in 2015 Conference on Design and Architectures for Signal and Image Processing (DASIP).   IEEE, 2015, pp. 1–8.
  529. J. Lin, Z. Yan, and Z. Wang, “Efficient soft cancelation decoder architectures for polar codes,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 1, pp. 87–99, 2016.
  530. L. Zhang, Y. Sun, Y. Shen, W. Song, X. You, and C. Zhang, “Efficient fast-scan flip decoder for polar codes,” in 2021 IEEE International Symposium on Circuits and Systems (ISCAS).   IEEE, 2021, pp. 1–5.
  531. C. Zhang, X. You, and J. Sha, “Hardware architecture for list successive cancellation polar decoder,” in 2014 IEEE International Symposium on Circuits and Systems (ISCAS).   IEEE, 2014, pp. 209–212.
  532. A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “Llr-based successive cancellation list decoding of polar codes,” IEEE transactions on signal processing, vol. 63, no. 19, pp. 5165–5179, 2015.
  533. X. Liu, Q. Zhang, P. Qiu, J. Tong, H. Zhang, C. Zhao, and J. Wang, “A 5.16 gbps decoder asic for polar code in 16nm finfet,” in 2018 15th International Symposium on Wireless Communication Systems (ISWCS).   IEEE, 2018, pp. 1–5.
  534. A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “On metric sorting for successive cancellation list decoding of polar codes,” in 2015 IEEE International Symposium on Circuits and Systems (ISCAS).   IEEE, 2015, pp. 1993–1996.
  535. G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast list decoders for polar codes,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 2, pp. 318–328, 2015.
  536. S. A. Hashemi, C. Condo, and W. J. Gross, “Fast and flexible successive-cancellation list decoders for polar codes,” IEEE Transactions on Signal Processing, vol. 65, no. 21, pp. 5756–5769, 2017.
  537. Y. Fan, C. Xia, J. Chen, C.-Y. Tsui, J. Jin, H. Shen, and B. Li, “A low-latency list successive-cancellation decoding implementation for polar codes,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 2, pp. 303–317, 2016.
  538. J. Lin, C. Xiong, and Z. Yan, “A high throughput list decoder architecture for polar codes,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 6, pp. 2378–2391, 2016.
  539. H.-Y. Lee, Y.-H. Pan, and Y.-L. Ueng, “A node-reliability based crc-aided successive cancellation list polar decoder architecture combined with post-processing,” IEEE transactions on signal processing, vol. 68, pp. 5954–5967, 2020.
  540. C. Kestel, M. Geiselhart, L. Johannsen, S. ten Brink, and N. Wehn, “Automorphism ensemble polar code decoders for 6g urllc,” in WSA & SCC 2023; 26th International ITG Workshop on Smart Antennas and 13th Conference on Systems, Communications, and Coding.   VDE, 2023, pp. 1–6.
  541. G. Coppolino, C. Condo, G. Masera, and W. J. Gross, “A multi-kernel multi-code polar decoder architecture,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 12, pp. 4413–4422, 2018.
  542. H. Rezaei, N. Rajatheva, and M. Latva-Aho, “Low-latency multi-kernel polar decoders,” IEEE Access, vol. 10, pp. 119 460–119 474, 2022.
  543. H. Rezaei, N. Rajatheva, and M. Latva-aho, “High-throughput rate-flexible combinational decoders for multi-kernel polar codes,” arXiv preprint arXiv:2301.10445, 2023.
  544. A. Pamuk, “An fpga implementation architecture for decoding of polar codes,” in 2011 8th International symposium on wireless communication systems.   IEEE, 2011, pp. 437–441.
  545. Y. Zhang, Q. Zhang, X. Pan, Z. Ye, and C. Gong, “A simplified belief propagation decoder for polar codes,” in 2014 IEEE International Wireless Symposium (IWS 2014).   IEEE, 2014, pp. 1–4.
  546. B. Yuan and K. K. Parhi, “Architecture optimizations for bp polar decoders,” in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.   IEEE, 2013, pp. 2654–2658.
  547. Y.-T. Chen, W.-C. Sun, C.-C. Cheng, T.-L. Tsai, Y.-L. Ueng, and C.-H. Yang, “An integrated message-passing detector and decoder for polar-coded massive mu-mimo systems,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 3, pp. 1205–1218, 2019.
  548. B. Yuan and K. K. Parhi, “Architectures for polar bp decoders using folding,” in 2014 IEEE International Symposium on Circuits and Systems (ISCAS).   IEEE, 2014, pp. 205–208.
  549. Y. S. Park, Y. Tao, S. Sun, and Z. Zhang, “A 4.68 gb/s belief propagation polar decoder with bit-splitting register file,” in 2014 Symposium on VLSI Circuits Digest of Technical Papers.   IEEE, 2014, pp. 1–2.
  550. J. Sha, X. Liu, Z. Wang, and X. Zeng, “A memory efficient belief propagation decoder for polar codes,” China Communications, vol. 12, no. 5, pp. 34–41, 2015.
  551. X. Gu, M. Rowshan, and J. Yuan, “A non-uniform quantization-based hardware architecture for bp decoding of polar codes,” pp. 1–6, 2023.
  552. M. Rowshan, E. Viterbo, R. Micheloni, and A. Marelli, “Logarithmic non-uniform quantization for list decoding of polar codes,” in 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC).   IEEE, 2021, pp. 1161–1166.
  553. S. M. Abbas, Y. Fan, J. Chen, and C.-Y. Tsui, “High-throughput and energy-efficient belief propagation polar code decoder,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 3, pp. 1098–1111, 2016.
  554. H. Ji, Y. Shen, W. Song, Z. Zhang, X. You, and C. Zhang, “Hardware implementation for belief propagation flip decoding of polar codes,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 3, pp. 1330–1341, 2020.
  555. Y. Shen, W. Song, Y. Ren, H. Ji, X. You, and C. Zhang, “Enhanced belief propagation decoder for 5g polar codes with bit-flipping,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 5, pp. 901–905, 2020.
  556. Y. Ren, Y. Shen, L. Zhang, A. T. Kristensen, A. Balatsoukas-Stimming, A. Burg, and C. Zhang, “High-throughput flexible belief propagation list decoder for polar codes,” arXiv preprint arXiv:2210.13887, 2022.
  557. P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross, “237 gbit/s unrolled hardware polar decoder,” Electronics Letters, vol. 51, no. 10, pp. 762–763, 2015.
  558. A. Süral, E. G. Sezer, Y. Ertuğrul, O. Arikan, and E. Arikan, “Terabits-per-second throughput for polar codes,” in 2019 IEEE 30th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops).   IEEE, 2019, pp. 1–7.
  559. P. Giard, A. Balatsoukas-Stimming, T. C. Müller, A. Burg, C. Thibeault, and W. J. Gross, “A multi-gbps unrolled hardware list decoder for a systematic polar code,” in 2016 50th Asilomar Conference on Signals, Systems and Computers.   IEEE, 2016, pp. 1194–1198.
  560. C. Kestel, L. Johannsen, O. Griebel, J. Jimenez, T. Vogt, T. Lehnigk-Emden, and N. Wehn, “A 506gbit/s polar successive cancellation list decoder with crc,” in 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications.   IEEE, 2020, pp. 1–7.
  561. L. Lopacinski, A. Hasani, G. Panic, N. Maletic, O. Schrape, J. Gutiérrez, M. Krstic, and E. Grass, “Ultra high-speed bp decoder for polar codes achieving 1.4 tbps in 28 nm cmos,” in 2022 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit).   IEEE, 2022, pp. 434–439.
  562. J. Xiao, Y. Zhou, S. Song, and Z. Wang, “A low-latency and area-efficient orbgrand decoder for polar codes,” in 2023 4th Information Communication Technologies Conference (ICTC).   IEEE, 2023, pp. 10–15.
  563. M. Bardet, V. Dragoi, A. Otmani, and J.-P. Tillich, “Algebraic properties of polar codes from a new polynomial formalism,” in 2016 IEEE International Symposium on Information Theory (ISIT), Jul. 2016, pp. 230–234, iSSN: 2157-8117.
  564. M. Rowshan, V.-F. Drăgoi, and J. Yuan, “On the closed-form weight enumeration of polar codes: 1.5d𝑑ditalic_d-weight codewords,” arXiv preprint arXiv:2305.02921, 2023.
  565. ——, “Weight structure of low/high-rate polar codes and its applications,” arXiv preprint arXiv:2402.12707, 2024.
  566. R1- 1612938, “Enhanced turbo codes for NR: Performance evaluation for eMBB and URLLC,” Orange and Institut Mines-Telecom, 3GPP TSG-RAN WG1 Meeting 87, Nov. 2016.
  567. T. Koike-Akino and Y. Wang, “Evolution of polar coding,” in IEEE International Symposium on Topics in Coding (ISTC), 2021.
  568. T. Stockhammer, A. Shokrollahi, M. Watson, M. Luby, and T. Gasiba, “Application layer forward error correction for mobile multimedia broadcasting,” in Handbook of mobile broadcasting.   Auerbach Publications, 2008, pp. 239–278.
  569. D. Gomez-Barquero, D. Gozalvez, and N. Cardona, “Application layer fec for mobile tv delivery in ip datacast over dvb-h systems,” IEEE Transactions on Broadcasting, vol. 55, no. 2, pp. 396–406, 2009.
  570. P. J. Marcelis, V. Rao, and R. V. Prasad, “Dare: Data recovery through application layer coding for lorawan,” in Proceedings of the Second International Conference on Internet-of-Things Design and Implementation, 2017, pp. 97–108.
  571. M. Sandell and U. Raza, “Application layer coding for iot: Benefits, limitations, and implementation aspects,” IEEE Systems Journal, vol. 13, no. 1, pp. 554–561, 2018.
  572. D. Hou, K. Zhao, and W. Li, “Application layer channel coding for space dtn,” in International Conference on Machine Learning and Intelligent Communications.   Springer, 2017, pp. 347–354.
  573. A. Shokrollahi and M. Luby, “Raptor codes,” Foundations and Trends® in Communications and Information Theory, vol. 6, no. 3–4, pp. 213–322, 2011. [Online]. Available: http://dx.doi.org/10.1561/0100000060
  574. H. Niu, M. Iwai, K. Sezaki, L. Sun, and Q. Du, “Exploiting fountain codes for secure wireless delivery,” IEEE Communications Letters, vol. 18, no. 5, pp. 777–780, 2014.
  575. M. Luby, “Lt codes,” in The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings.   IEEE Computer Society, 2002, pp. 271–271.
  576. A. Shokrollahi, “Raptor codes,” IEEE transactions on information theory, vol. 52, no. 6, pp. 2551–2567, 2006.
  577. O. Etesami and A. Shokrollahi, “Raptor codes on binary memoryless symmetric channels,” IEEE Transactions on Information Theory, vol. 52, no. 5, pp. 2033–2051, 2006.
  578. Z. Cheng, J. Castura, and Y. Mao, “On the design of raptor codes for binary-input Gaussian channels,” IEEE Transactions on Communications, vol. 57, no. 11, pp. 3269–3277, 2009.
  579. S. Jayasooriya, M. Shirvanimoghaddam, L. Ong, and S. J. Johnson, “Analysis and design of raptor codes using a multi-edge framework,” IEEE Transactions on Communications, vol. 65, no. 12, pp. 5123–5136, 2017.
  580. J. Castura and Y. Mao, “Rateless coding over fading channels,” IEEE Communications Letters, vol. 10, no. 1, pp. 46–48, 2006.
  581. ——, “Rateless coding and relay networks,” IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 27–35, 2007.
  582. M. Shirvanimoghaddam, M. Dohler, and S. J. Johnson, “Massive multiple access based on superposition Raptor codes for cellular M2M communications,” IEEE Transactions on Wireless Communications, vol. 16, no. 1, pp. 307–319, 2017.
  583. Y.-M. Chen, W.-M. Lai, and Y.-L. Ueng, “Rateless coded multiplexing for downlink transmission with two users: Performance analysis and system design,” IEEE Access, vol. 7, pp. 50 440–50 452, 2019.
  584. J. Perry, H. Balakrishnan, and D. Shah, “Rateless spinal codes,” in Proceedings of the 10th ACM Workshop on Hot Topics in Networks.   New York, NY, USA: Association for Computing Machinery, 2011, pp. 1–6.
  585. H. Balakrishnan, P. Iannucci, J. Perry, and D. Shah, “De-randomizing Shannon: The design and analysis of a capacity-achieving rateless code,” 2012.
  586. J. Perry, P. A. Iannucci, K. E. Fleming, H. Balakrishnan, and D. Shah, “Spinal codes,” SIGCOMM Comput. Commun. Rev., vol. 42, no. 4, p. 49–60, aug 2012.
  587. W. Yang, Y. Li, X. Yu, and J. Li, “A low complexity sequential decoding algorithm for rateless Spinal codes,” IEEE Communications Letters, vol. 19, no. 7, pp. 1105–1108, 2015.
  588. E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in lattices,” IEEE Trans. Inf. Theory, vol. 48, no. 8, pp. 2201–2214, 2002.
  589. U. Erez and R. Zamir, “Achieving 1/2 log (1+SNR) on the AWGN channel with lattice encoding and decoding,” IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2293–2314, Oct. 2004.
  590. N. Sommer, M. Feder, and O. Shalvi, “Low-density lattice codes,” IEEE Trans. Inf. Theory, vol. 54, no. 4, pp. 1561–1585, Apr. 2008.
  591. O. Shalvi, N. Sommer, and M. Feder, “Signal codes: Convolutional lattice codes,” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 5203–5226, Aug. 2011.
  592. M.-R. Sadeghi, A. Banihashemi, and D. Panario, “Low-density parity-check lattices: Construction and decoding analysis,” IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4481–4495, Oct. 2006.
  593. N. di Pietro and J. J. Boutros, “Leech constellations of Construction-A lattices,” IEEE Trans. Commun., vol. 65, no. 11, pp. 4622–4631, Nov. 2017.
  594. M. Qiu, L. Yang, Y. Xie, and J. Yuan, “On the design of multi-dimensional irregular repeat-accumulate lattice codes,” IEEE Trans. Commun., vol. 66, no. 2, pp. 478–492, 2018.
  595. L. Liu, Y. Yan, C. Ling, and X. Wu, “Construction of capacity-achieving lattice codes: Polar lattices,” IEEE Trans. Commun., vol. 67, no. 2, pp. 915–928, 2019.
  596. J. Boutros, E. Viterbo, C. Rastello, and J. C. Belfiore, “Good lattice constellations for both Rayleigh fading and Gaussian channels,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp. 502–518, Mar. 1996.
  597. F. Oggier and E. Viterbo, “Algebraic number theory and code design for rayleigh fading channels,” Foundations and Trends Commun. Inf. Theory, vol. 1, no. 3, pp. 333–416, Dec. 2004.
  598. F. Oggier, J.-C. Belfiore, and E. Viterbo, “Cyclic division algebras: A tool for space–time coding,” Foundations and Trends Commun. Inf. Theory, vol. 4, no. 1, pp. 1–95, 2007. [Online]. Available: http://dx.doi.org/10.1561/0100000016
  599. B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing interference through structured codes,” IEEE Trans. Inf. Theory, vol. 57, no. 10, pp. 6463–6486, 2011.
  600. Q. T. Sun, J. Yuan, T. Huang, and K. W. Shum, “Lattice network codes based on eisenstein integers,” IEEE Trans. Commun., vol. 61, no. 7, pp. 2713–2725, Jul. 2013.
  601. C. Feng, D. Silva, and F. R. Kschischang, “An algebraic approach to physical-layer network coding,” IEEE Trans. Inf. Theory, vol. 59, no. 11, pp. 7576–7596, Nov. 2013.
  602. N. E. Tunali, Y. C. Huang, J. J. Boutros, and K. R. Narayanan, “Lattices over Eisenstein integers for compute-and-forward,” IEEE Trans. Inf. Theory, vol. 61, no. 10, pp. 5306–5321, Oct. 2015.
  603. M. Qiu, Y.-C. Huang, S.-L. Shieh, and J. Yuan, “A lattice-partition framework of downlink non-orthogonal multiple access without SIC,” IEEE Trans. Commun., vol. 66, no. 6, pp. 2532–2546, Jun. 2018.
  604. M. Qiu, Y.-C. Huang, J. Yuan, and C.-L. Wang, “Lattice-partition-based downlink non-orthogonal multiple access without SIC for slow fading channels,” IEEE Trans. Commun., vol. 67, no. 2, pp. 1166–1181, Feb. 2019.
  605. M. Qiu, Y.-C. Huang, and J. Yuan, “Downlink non-orthogonal multiple access without SIC for block fading channels: An algebraic rotation approach,” IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 3903–3918, Aug. 2019.
  606. ——, “Discrete signaling and treating interference as noise for the Gaussian interference channel,” IEEE Trans. Inf. Theory, vol. 67, no. 11, pp. 7253–7284, Nov. 2021.
  607. A. Joseph and A. R. Barron, “Least squares superposition codes of moderate dictionary size are reliable at rates up to capacity,” IEEE Trans. Inf. Theory, vol. 58, no. 5, pp. 2541–2557, 2012.
  608. ——, “Fast sparse superposition codes have near exponential error probability for R<<<C,” IEEE Trans. Inf. Theory, vol. 60, no. 2, pp. 919–942, 2014.
  609. C. Rush, K. Hsieh, and R. Venkataramanan, “Capacity-achieving spatially coupled sparse superposition codes with AMP decoding,” IEEE Trans. Inf. Theory, vol. 67, no. 7, pp. 4446–4484, 2021.
  610. R. Venkataramanan, S. Tatikonda, and A. Barron, “Sparse regression codes,” Found. Trends Commun. Inf. Theory, vol. 15, no. 1-2, pp. 1–195, 2019. [Online]. Available: http://dx.doi.org/10.1561/0100000092
  611. Y. Takeishi, M. Kawakita, and J. Takeuchi, “Least squares superposition codes with Bernoulli dictionary are still reliable at rates up to capacity,” IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2737–2750, 2014.
  612. Y. Takeishi and J. Takeuchi, “An improved upper bound on block error probability of least squares superposition codes with unbiased Bernoulli dictionary,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2016, pp. 1168–1172.
  613. K. Hsieh and R. Venkataramanan, “Modulated sparse superposition codes for the complex AWGN channel,” IEEE Trans. Inf. Theory, vol. 67, no. 7, pp. 4385–4404, 2021.
  614. A. Fengler, P. Jung, and G. Caire, “SPARCs for unsourced random access,” IEEE Trans. Inf. Theory, vol. 67, no. 10, pp. 6894–6915, 2021.
  615. J. Cho and P. J. Winzer, “Probabilistic constellation shaping for optical fiber communications,” Journal of Lightwave Technology, vol. 37, no. 6, pp. 1590–1607, 2019.
  616. M. F. Barsoum, C. Jones, and M. Fitz, “Constellation design via capacity maximization,” in IEEE International Symposium on Information Theory, 2007, pp. 1821–1825.
  617. G. Böcherer, “Probabilistic amplitude shaping,” Foundations and Trends® in Communications and Information Theory, vol. 20, no. 4, pp. 390–511, 2023. [Online]. Available: http://dx.doi.org/10.1561/0100000111
  618. P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of ofdm/oqam systems based on filterbank theory,” IEEE transactions on signal processing, vol. 50, no. 5, pp. 1170–1183, 2002.
  619. R. Hadani, S. Rakib, M. Tsatsanis, A. Monk, A. J. Goldsmith, A. F. Molisch, and R. Calderbank, “Orthogonal time frequency space modulation,” in 2017 IEEE Wireless Communications and Networking Conference (WCNC).   IEEE, 2017, pp. 1–6.
  620. H. Lin and J. Yuan, “Orthogonal delay-doppler division multiplexing modulation,” IEEE Transactions on Wireless Communications, vol. 21, no. 12, pp. 11 024–11 037, 2022.
  621. H. Lin, J. Yuan, W. Yu, J. Wu, and L. Hanzo, “Multi-carrier modulation: An evolution from time-frequency domain to delay-Doppler domain,” 2023.
  622. M. Giordani and M. Zorzi, “Non-terrestrial networks in the 6g era: Challenges and opportunities,” IEEE Network, vol. 35, no. 2, pp. 244–251, 2020.
  623. H.-B. Jeon, S.-M. Kim, H.-J. Moon, D.-H. Kwon, J.-W. Lee, J.-M. Chung, S.-K. Han, C.-B. Chae, and M.-S. Alouini, “Free-space optical communications for 6g wireless networks: Challenges, opportunities, and prototype validation,” IEEE Communications Magazine, vol. 61, no. 4, pp. 116–121, 2023.
  624. H. G. Sandalidis, “Coded free-space optical links over strong turbulence and misalignment fading channels,” IEEE Transactions on Communications, vol. 59, no. 3, pp. 669–674, 2010.
  625. M. Chochol, A. Rissons, J. Lacan, N. Vedrenne, and G. Artaud, “Evaluation of error correcting code performances of a free space optical communication system between leo satellite and ground station,” in Unmanned/Unattended Sensors and Sensor Networks XI; and Advanced Free-Space Optical Communication Techniques and Applications, vol. 9647.   SPIE, 2015, pp. 93–101.
  626. A. Dixit, V. K. Jain et al., “Analytical determination of thresholds of ldpc codes in free space optical channel,” IEEE Open Journal of the Communications Society, vol. 2, pp. 35–47, 2020.
  627. A. AbdulHussein, A. Oka, T. T. Nguyen, and L. Lampe, “Rateless coding for hybrid free-space optical and radio-frequency communication,” IEEE Transactions on Wireless Communications, vol. 9, no. 3, pp. 907–913, 2010.
  628. S. Kumar et al., “Impact of reed solomon forward error correction code in enhancing performance of free space optical communication link,” in Laser Communication and Propagation through the Atmosphere and Oceans IX, vol. 11506.   SPIE, 2020, pp. 25–32.
Citations (6)

Summary

We haven't generated a summary for this paper yet.