Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Effects of lattice imperfections on high-harmonic generation from correlated systems (2306.08379v2)

Published 14 Jun 2023 in cond-mat.str-el

Abstract: Using the one-dimensional Fermi-Hubbard model we study the effects of lattice imperfections on high-harmonic generation (HHG) from correlated systems. We simulate such imperfections by randomly modifying the chemical potential across the individual lattice sites. We control the degree of correlation by varying the Hubbard $U$. In the limit of vanishing $U$, this approach results in Anderson localization. For non-vanishing $U$, we explain the spectral observations using a qualitative picture in which correlation and the imperfections may balance each other out, causing Bloch-like transitions, i.e., transitions similar to those occurring in the case with small or vanishing $U$ and with vanishing imperfection-induced energy gaps, even though the dynamics take place under conditions of high $U$ and severe imperfections. We verify this picture by studying HHG spectra where imperfections are found to cause gain in the HHG spectra. The spectral gain is mainly in high harmonic orders for low correlation and low harmonic orders for high correlation. We explain this using the following qualitative picture. For low correlation, the addition of imperfections gives rise to significant energy gaps in the system, corresponding to high harmonics, and when the correlation is massive the addition of imperfections balances out the correlation, resulting in smaller energy gaps, meaning lower harmonic orders. We further demonstrate how in the unbalanced cases, i.e., high $U$ and relatively small amount of imperfection or vice versa, the dynamics are largely adiabatic, and how in the balanced cases, with similar magnitude of correlation and imperfection, the dynamics are qualitatively similar.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. T. T. Luu and H. J. Wörner, Measurement of the Berry curvature of solids using high-harmonic spectroscopy, Nature Communications 9, 916 (2018).
  2. M. Lein and J. M. Rost, Ultrahigh harmonics from laser-assisted ion-atom collisions, Phys. Rev. Lett. 91, 243901 (2003).
  3. Y. S. You, D. A. Reis, and S. Ghimire, Anisotropic high-harmonic generation in bulk crystals, Nature Physics 13, 345 (2017).
  4. S. V. B. Jensen and L. B. Madsen, Propagation time and nondipole contributions to intraband high-order harmonic generation, Phys. Rev. A 105, L021101 (2022).
  5. S. Yamada and K. Yabana, Determining the optimum thickness for high harmonic generation from nanoscale thin films: An ab initio computational study, Phys. Rev. B 103, 155426 (2021).
  6. K. K. Hansen, T. Deffge, and D. Bauer, High-order harmonic generation in solid slabs beyond the single-active-electron approximation, Phys. Rev. A 96, 053418 (2017).
  7. D. Golde, T. Meier, and S. W. Koch, High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations, Phys. Rev. B 77, 075330 (2008).
  8. Y. Murakami, M. Eckstein, and P. Werner, High-harmonic generation in Mott insulators, Phys. Rev. Lett. 121, 057405 (2018).
  9. M. Lysne, Y. Murakami, and P. Werner, Signatures of bosonic excitations in high-harmonic spectra of Mott insulators, Phys. Rev. B 101, 195139 (2020).
  10. N. Tancogne-Dejean, M. A. Sentef, and A. Rubio, Ultrafast modification of hubbard U𝑈{{U}}italic_U in a strongly correlated material: Ab initio high-harmonic generation in NiO, Phys. Rev. Lett. 121, 097402 (2018).
  11. S. Imai, A. Ono, and S. Ishihara, High harmonic generation in a correlated electron system, Phys. Rev. Lett. 124, 157404 (2020).
  12. K. Chinzei and T. N. Ikeda, Disorder effects on the origin of high-order harmonic generation in solids, Phys. Rev. Research 2, 013033 (2020).
  13. C. Orthodoxou, A. Zaïr, and G. H. Booth, High harmonic generation in two-dimensional Mott insulators, npj Quantum Materials 6, 76 (2021).
  14. T. Hansen, S. V. B. Jensen, and L. B. Madsen, Correlation effects in high-order harmonic generation from finite systems, Phys. Rev. A 105, 053118 (2022).
  15. J. Masur, D. I. Bondar, and G. McCaul, Optical distinguishability of Mott insulators in the time versus frequency domain, Phys. Rev. A 106, 013110 (2022).
  16. T. Hansen and L. B. Madsen, Doping effects in high-harmonic generation from correlated systems, Phys. Rev. B 106, 235142 (2022).
  17. Y. Murakami and P. Werner, Nonequilibrium steady states of electric field driven Mott insulators, Phys. Rev. B 98, 075102 (2018).
  18. P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109, 1492 (1958).
  19. C. Yu, K. K. Hansen, and L. B. Madsen, High-order harmonic generation in imperfect crystals, Phys. Rev. A 99, 063408 (2019).
  20. A. Pattanayak, M. M. S., and G. Dixit, Influence of vacancy defects in solid high-order harmonic generation, Phys. Rev. A 101, 013404 (2020).
  21. H. Iravani, K. K. Hansen, and L. B. Madsen, Effects of vacancies on high-order harmonic generation in a linear chain with band gap, Phys. Rev. Res. 2, 013204 (2020).
  22. A.-W. Zeng and X.-B. Bian, Role of long-range correlations in high harmonic generation in disordered systems, J. Phys. B 55, 085401 (2022).
  23. P. Prelovšek, O. S. Barišić, and M. Žnidarič, Absence of full many-body localization in the disordered Hubbard chain, Phys. Rev. B 94, 241104 (2016).
  24. F. Alet and N. Laflorencie, Many-body localization: An introduction and selected topics, Comptes Rendus Physique 19, 498 (2018), quantum simulation / Simulation quantique.
  25. J. A. Minahan, Strong coupling from the Hubbard model, Journal of Physics A: Mathematical and General 39, 13083 (2006).
  26. M. B. Gaarde, J. L. Tate, and K. J. Schafer, Macroscopic aspects of attosecond pulse generation, J. Phys. B 41, 132001 (2008).
  27. J. C. Baggesen and L. B. Madsen, On the dipole, velocity and acceleration forms in high-order harmonic generation from a single atom or molecule, J. Phys. B 44, 115601 (2011).
  28. G. D. Mahan, Many-Particle Physics (Kluwer Academic, New York, 2000) p. 24.
  29. T. J. Park and J. C. Light, Unitary quantum time evolution by iterative Lanczos reduction, J. Chem. Phys. 85, 5870 (1986).
  30. E. S. Smyth, J. S. Parker, and K. Taylor, Numerical integration of the time-dependent Schrödinger equation for laser-driven helium, Comput. Phys. Commun. 114, 1 (1998).
  31. N. Tomita and K. Nasu, Quantum fluctuation effects on light absorption spectra of the one-dimensional extended Hubbard model, Phys. Rev. B 63, 085107 (2001).
  32. D. J. Griffiths, Introduction to quantum mechanics, 2nd ed. (Cambridge University Press, 2017).
Citations (2)

Summary

We haven't generated a summary for this paper yet.