Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Noninteger high-harmonic generation from extended correlated systems (2403.08327v1)

Published 13 Mar 2024 in physics.atom-ph and quant-ph

Abstract: The spectra produced by high-harmonic generation (HHG) typically exhibit well-defined peaks at odd integers times the laser frequency. However, in recent investigations of HHG from correlated materials, spectra exhibit signals at noninteger harmonics which do not conform to the well-known symmetry-based selection rules for HHG-spectra. Here, we use the Fermi-Hubbard model to study HHG from a linear chain of atoms. This model allows us to study both the correlated and uncorrelated phases through a specification of the amount of onsite electron-electron repulsion. The presence of signal at noninteger harmonics can be interpreted as originating from the population of multiple Floquet states. We show how this coupling to different Floquet states depends on the characteristics of the driving pulse and the strength of the electron-electron interaction in the system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. F. Krausz and M. Ivanov, Attosecond physics, Rev. Mod. Phys. 81, 163 (2009).
  2. O. Neufeld, D. Podolsky, and O. Cohen, Floquet group theory and its application to selection rules in harmonic generation, Nature Communications 10, 405 (2019).
  3. S. Ghimire and D. A. Reis, High-harmonic generation from solids, Nature Physics 15, 10 (2019).
  4. E. Goulielmakis and T. Brabec, High harmonic generation in condensed matter, Nature Photonics 16, 411 (2022).
  5. Y. Murakami, M. Eckstein, and P. Werner, High-harmonic generation in Mott insulators, Phys. Rev. Lett. 121, 057405 (2018).
  6. Y. Murakami and P. Werner, Nonequilibrium steady states of electric field driven Mott insulators, Phys. Rev. B 98, 075102 (2018).
  7. T. Hansen, S. V. B. Jensen, and L. B. Madsen, Correlation effects in high-order harmonic generation from finite systems, Phys. Rev. A 105, 053118 (2022).
  8. T. Hansen and L. B. Madsen, Doping effects in high-harmonic generation from correlated systems, Phys. Rev. B 106, 235142 (2022).
  9. C. S. Lange, T. Hansen, and L. B. Madsen, Electron-correlation induced nonclassicallity of light from high-harmonic generation (2023), arXiv:2312.08942 [quant-ph] .
  10. T. Hansen and L. B. Madsen, Effects of lattice imperfections on high-harmonic generation from correlated systems (2023), arXiv:2306.08379 [cond-mat.str-el] .
  11. P. A. Lee, N. Nagaosa, and X.-G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys. 78, 17 (2006).
  12. M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator transitions, Rev. Mod. Phys. 70, 1039 (1998).
  13. M. Holthaus, Floquet engineering with quasienergy bands of periodically driven optical lattices, Journal of Physics B: Atomic, Molecular and Optical Physics 49, 013001 (2015).
  14. C. J. Joachain, N. J. Kylstra, and R. M. Potvliege, Atoms in Intense Laser Fields (Cambridge University Press, Cambridge, 2011).
  15. N. Tomita and K. Nasu, Quantum fluctuation effects on light absorption spectra of the one-dimensional extended Hubbard model, Phys. Rev. B 63, 085107 (2001).
  16. T. J. Park and J. C. Light, Unitary quantum time evolution by iterative Lanczos reduction, J. Chem. Phys. 85, 5870 (1986).
  17. E. S. Smyth, J. S. Parker, and K. Taylor, Numerical integration of the time-dependent Schrödinger equation for laser-driven helium, Comput. Phys. Commun. 114, 1 (1998).
  18. T. Millack and A. Maquet, Hyper-raman lines produced during high harmonic generation, Journal of Modern Optics, Journal of Modern Optics 40, 2161 (1993).
  19. P. P. Corso, L. L. Cascio, and F. Persico, The role of hyper-raman transitions in the radiation spectrum of a strongly driven two-level atom, Journal of Modern Optics 44, 819 (1997).
  20. A. Di Piazza and E. Fiordilino, Why hyper-raman lines are absent in high-order harmonic generation, Phys. Rev. A 64, 013802 (2001).
  21. N. Moiseyev and M. Lein, Non-hermitian quantum mechanics for high-order harmonic generation spectra, The Journal of Physical Chemistry A 107, 7181 (2003).
  22. T. Oka, Nonlinear doublon production in a mott insulator: Landau-dykhne method applied to an integrable model, Phys. Rev. B 86, 075148 (2012).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com