Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Kimi K2 164 tok/s Pro
2000 character limit reached

The quantum geometric origin of capacitance in insulators (2306.08035v2)

Published 13 Jun 2023 in cond-mat.mes-hall

Abstract: In band insulators, where the Fermi surface is absent, adiabatic transport is allowed only due to the geometry of the Hilbert space. By driving the system at a small but finite frequency $\omega$, transport is still expected to depend sensitively on the quantum geometry. Here we show that this expectation is correct and can be made precise by expressing the Kubo formula for conductivity as the variation of the \emph{time-dependent polarization} with respect to the applied field. In particular, a little appreciated effect is that at linear order in frequency, the longitudinal conductivity results from an intrinsic capacitance, determined by the ratio of the quantum metric and the spectral gap. We demonstrate that this intrinsic capacitance has a measurable effect in a wide range of insulators with non-negligible metric, including the electron gas in a quantizing magnetic field, the gapped bands of hBN-aligned twisted bilayer graphene, and obstructed atomic insulators such as diamond whose large refractive index has a topological origin. We also discuss the influence of quantum geometry on the dielectric constant.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. D. Vanderbilt, Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators (Cambridge University Press, 2018).
  2. J. P. Provost and G. Vallee, Riemannian structure on manifolds of quantum states, Commun. Math. Phys. 76, 289 (1980).
  3. D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010), arXiv:0907.2021 [cond-mat.mes-hall] .
  4. M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010), arXiv:1002.3895 [cond-mat.mes-hall] .
  5. X.-L. Qi and S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011), arXiv:1008.2026 [cond-mat.mes-hall] .
  6. Y. Gao, S. A. Yang, and Q. Niu, Geometrical effects in orbital magnetic susceptibility, Phys. Rev. B 91, 214405 (2015), arXiv:1411.0324 [cond-mat.mes-hall] .
  7. Y. Gao and D. Xiao, Nonreciprocal Directional Dichroism Induced by the Quantum Metric Dipole, Phys. Rev. Lett. 122, 227402 (2019), arXiv:1810.02728 [cond-mat.mes-hall] .
  8. S. Peotta and P. Törmä, Superfluidity in topologically nontrivial flat bands, Nat. Commun. 6, 8944 (2015), arXiv:1506.02815 [cond-mat.supr-con] .
  9. I. Souza, T. Wilkens, and R. M. Martin, Polarization and localization in insulators: Generating function approach, Phys. Rev. B 62, 1666 (2000), arXiv:cond-mat/9911007 [cond-mat] .
  10. I. Souza, J. Íñiguez, and D. Vanderbilt, Dynamics of Berry-phase polarization in time-dependent electric fields, Phys. Rev. B 69, 085106 (2004), arXiv:cond-mat/0309259 [cond-mat.mtrl-sci] .
  11. R. Resta, The insulating state of matter: a geometrical theory, Euro. Phys. J. B 79, 121 (2011), arXiv:1012.5776 [cond-mat.mtrl-sci] .
  12. G. Nenciu, Dynamics of band electrons in electric and magnetic fields: rigorous justification of the effective Hamiltonians, Rev. Mod. Phys. 63, 91 (1991).
  13. N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B 56, 12847 (1997), arXiv:cond-mat/9707145 [cond-mat.mtrl-sci] .
  14. T. Holder, Electrons flow like falling cats: Deformations and emergent gravity in quantum transport, arXiv , arXiv:2111.07782 (2021), arXiv:2111.07782 [cond-mat.mes-hall] .
  15. O. Viehweger and K. B. Efetov, Low-frequency behavior of the kinetic coefficients in localization regimes in strong magnetic fields, Phys. Rev. B 44, 1168 (1991).
  16. R. Roy, Band geometry of fractional topological insulators, Phys. Rev. B 90, 165139 (2014).
  17. T. Ozawa and B. Mera, Relations between topology and the quantum metric for Chern insulators, Phys. Rev. B 104, 045103 (2021), arXiv:2103.11582 [cond-mat.mes-hall] .
  18. S. Wu and J.-J. Yu, Attofarad capacitance measurement corresponding to single-molecular level structural variations of self-assembled monolayers using scanning microwave microscopy, Appl. Phys. Lett. 97, 202902 (2010).
  19. T. Cea, P. A. Pantaleón, and F. Guinea, Band structure of twisted bilayer graphene on hexagonal boron nitride, Phys. Rev. B 102, 155136 (2020), arXiv:2005.07396 [cond-mat.str-el] .
  20. J. Shi, J. Zhu, and A. H. MacDonald, Moiré commensurability and the quantum anomalous Hall effect in twisted bilayer graphene on hexagonal boron nitride, Phys. Rev. B 103, 075122 (2021), arXiv:2011.11895 [cond-mat.mes-hall] .
  21. R. Bistritzer and A. H. MacDonald, Moiré bands in twisted double-layer graphene, PNAS 108, 12233 (2011), arXiv:1009.4203 [cond-mat.mes-hall] .
  22. Y.-H. Zhang, D. Mao, and T. Senthil, Twisted bilayer graphene aligned with hexagonal boron nitride: Anomalous hall effect and a lattice model, Physical Review Research 1, 10.1103/physrevresearch.1.033126 (2019).
  23. P. J. Ledwith, A. Vishwanath, and E. Khalaf, Family of ideal chern flatbands with arbitrary chern number in chiral twisted graphene multilayers, Physical Review Letters 128, 10.1103/physrevlett.128.176404 (2022).
  24. G. Grosso and G. P. Parravicini, Solid State Physics (Academic Press, 2000).
  25. O. Madelung, Semiconductors: Data handbook (2004).
  26. K. Kobayashi, Electron transmission through atomic steps of bi22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTse33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT and bi22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTte33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT surfaces, Phys. Rev. B 84, 205424 (2011).
  27. T. Ozawa and N. Goldman, Extracting the quantum metric tensor through periodic driving, Phys. Rev. B 97, 201117 (2018), arXiv:1803.05818 [cond-mat.mes-hall] .
  28. T. Ozawa, Steady-state Hall response and quantum geometry of driven-dissipative lattices, Phys. Rev. B 97, 041108 (2018), arXiv:1708.00333 [cond-mat.mes-hall] .
  29. T. S. Moss, Relations between the Refractive Index and Energy Gap of Semiconductors, Phys. Status Solidi B 131, 415 (1985).
  30. R. Ravichandran, A. X. Wang, and J. F. Wager, Solid state dielectric screening versus band gap trends and implications, Optic. Mater. 60, 181 (2016).
  31. H. M. Gomaa, I. S. Yahia, and H. Y. Zahran, Correlation between the static refractive index and the optical bandgap: Review and new empirical approach, Physica B Cond. Matt. 620, 413246 (2021).
  32. D. Kaplan, T. Holder, and B. Yan, General nonlinear Hall current in magnetic insulators beyond the quantum anomalous Hall effect, Nat. Commun. 14, arXiv:2209.09531 (2023), arXiv:2209.09531 [cond-mat.mes-hall] .
  33. R. Kubo, Statistical-mechanical theory of irreversible processes. i. general theory and simple applications to magnetic and conduction problems, Journal of the Physical Society of Japan 12, 570 (1957).
  34. R. Resta and D. Vanderbilt, Theory of polarization: A modern approach (2007) pp. 31–68.
  35. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Sum rules for the optical and hall conductivity in graphene, Phys. Rev. B 75, 165407 (2007).
  36. P. Bhattacharya, R. Fornari, and H. Kamimura, Comprehensive semiconductor science and technology (2011) pp. 1–647.
  37. A. Laturia, M. L. Van de Put, and W. G. Vandenberghe, Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk, npj 2D Materials and Applications 2, 6 (2018).
  38. CRC Handbook of Chemistry and Physics (2016).
  39. Datasheet from “pauling file multinaries edition – 2022” in springermaterials.
Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.