Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cheating off your neighbors: Improving activity recognition through corroboration (2306.06078v1)

Published 27 May 2023 in cs.CV, cs.HC, cs.LG, and eess.SP

Abstract: Understanding the complexity of human activities solely through an individual's data can be challenging. However, in many situations, surrounding individuals are likely performing similar activities, while existing human activity recognition approaches focus almost exclusively on individual measurements and largely ignore the context of the activity. Consider two activities: attending a small group meeting and working at an office desk. From solely an individual's perspective, it can be difficult to differentiate between these activities as they may appear very similar, even though they are markedly different. Yet, by observing others nearby, it can be possible to distinguish between these activities. In this paper, we propose an approach to enhance the prediction accuracy of an individual's activities by incorporating insights from surrounding individuals. We have collected a real-world dataset from 20 participants with over 58 hours of data including activities such as attending lectures, having meetings, working in the office, and eating together. Compared to observing a single person in isolation, our proposed approach significantly improves accuracy. We regard this work as a first step in collaborative activity recognition, opening new possibilities for understanding human activity in group settings.

Summary

We haven't generated a summary for this paper yet.