Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MC-NN: An End-to-End Multi-Channel Neural Network Approach for Predicting Influenza A Virus Hosts and Antigenic Types (2306.05587v4)

Published 8 Jun 2023 in cs.LG and q-bio.QM

Abstract: Influenza poses a significant threat to public health, particularly among the elderly, young children, and people with underlying dis-eases. The manifestation of severe conditions, such as pneumonia, highlights the importance of preventing the spread of influenza. An accurate and cost-effective prediction of the host and antigenic sub-types of influenza A viruses is essential to addressing this issue, particularly in resource-constrained regions. In this study, we propose a multi-channel neural network model to predict the host and antigenic subtypes of influenza A viruses from hemagglutinin and neuraminidase protein sequences. Our model was trained on a comprehensive data set of complete protein sequences and evaluated on various test data sets of complete and incomplete sequences. The results demonstrate the potential and practicality of using multi-channel neural networks in predicting the host and antigenic subtypes of influenza A viruses from both full and partial protein sequences.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. Lafond, K. E. et al. Global burden of influenza-associated lower respiratory tract infections and hospitalizations among adults: A systematic review and meta-analysis. PLoS Medicine 18 (3), e1003550 (2021) . [2] Lau, L. L. et al. Viral shedding and clinical illness in naturally acquired influenza virus infections. The Journal of infectious diseases 201 (10), 1509–1516 (2010) . [3] Wilde, J. A. et al. Effectiveness of influenza vaccine in health care professionals: a randomized trial. Jama 281 (10), 908–913 (1999) . [4] Watanabe, T. Renal complications of seasonal and pandemic influenza a virus infections. European journal of pediatrics 172 (1), 15–22 (2013) . [5] Casas-Aparicio, G. A. et al. Aggressive fluid accumulation is associated with acute kidney injury and mortality in a cohort of patients with severe pneumonia caused by influenza a h1n1 virus. PLoS One 13 (2), e0192592 (2018) . [6] England, P. H. Influenza: the green book, chapter 19 (2020) . [7] Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Lau, L. L. et al. Viral shedding and clinical illness in naturally acquired influenza virus infections. The Journal of infectious diseases 201 (10), 1509–1516 (2010) . [3] Wilde, J. A. et al. Effectiveness of influenza vaccine in health care professionals: a randomized trial. Jama 281 (10), 908–913 (1999) . [4] Watanabe, T. Renal complications of seasonal and pandemic influenza a virus infections. European journal of pediatrics 172 (1), 15–22 (2013) . [5] Casas-Aparicio, G. A. et al. Aggressive fluid accumulation is associated with acute kidney injury and mortality in a cohort of patients with severe pneumonia caused by influenza a h1n1 virus. PLoS One 13 (2), e0192592 (2018) . [6] England, P. H. Influenza: the green book, chapter 19 (2020) . [7] Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Wilde, J. A. et al. Effectiveness of influenza vaccine in health care professionals: a randomized trial. Jama 281 (10), 908–913 (1999) . [4] Watanabe, T. Renal complications of seasonal and pandemic influenza a virus infections. European journal of pediatrics 172 (1), 15–22 (2013) . [5] Casas-Aparicio, G. A. et al. Aggressive fluid accumulation is associated with acute kidney injury and mortality in a cohort of patients with severe pneumonia caused by influenza a h1n1 virus. PLoS One 13 (2), e0192592 (2018) . [6] England, P. H. Influenza: the green book, chapter 19 (2020) . [7] Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Watanabe, T. Renal complications of seasonal and pandemic influenza a virus infections. European journal of pediatrics 172 (1), 15–22 (2013) . [5] Casas-Aparicio, G. A. et al. Aggressive fluid accumulation is associated with acute kidney injury and mortality in a cohort of patients with severe pneumonia caused by influenza a h1n1 virus. PLoS One 13 (2), e0192592 (2018) . [6] England, P. H. Influenza: the green book, chapter 19 (2020) . [7] Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Casas-Aparicio, G. A. et al. Aggressive fluid accumulation is associated with acute kidney injury and mortality in a cohort of patients with severe pneumonia caused by influenza a h1n1 virus. PLoS One 13 (2), e0192592 (2018) . [6] England, P. H. Influenza: the green book, chapter 19 (2020) . [7] Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). England, P. H. Influenza: the green book, chapter 19 (2020) . [7] Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  2. Lau, L. L. et al. Viral shedding and clinical illness in naturally acquired influenza virus infections. The Journal of infectious diseases 201 (10), 1509–1516 (2010) . [3] Wilde, J. A. et al. Effectiveness of influenza vaccine in health care professionals: a randomized trial. Jama 281 (10), 908–913 (1999) . [4] Watanabe, T. Renal complications of seasonal and pandemic influenza a virus infections. European journal of pediatrics 172 (1), 15–22 (2013) . [5] Casas-Aparicio, G. A. et al. Aggressive fluid accumulation is associated with acute kidney injury and mortality in a cohort of patients with severe pneumonia caused by influenza a h1n1 virus. PLoS One 13 (2), e0192592 (2018) . [6] England, P. H. Influenza: the green book, chapter 19 (2020) . [7] Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Wilde, J. A. et al. Effectiveness of influenza vaccine in health care professionals: a randomized trial. Jama 281 (10), 908–913 (1999) . [4] Watanabe, T. Renal complications of seasonal and pandemic influenza a virus infections. European journal of pediatrics 172 (1), 15–22 (2013) . [5] Casas-Aparicio, G. A. et al. Aggressive fluid accumulation is associated with acute kidney injury and mortality in a cohort of patients with severe pneumonia caused by influenza a h1n1 virus. PLoS One 13 (2), e0192592 (2018) . [6] England, P. H. Influenza: the green book, chapter 19 (2020) . [7] Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Watanabe, T. Renal complications of seasonal and pandemic influenza a virus infections. European journal of pediatrics 172 (1), 15–22 (2013) . [5] Casas-Aparicio, G. A. et al. Aggressive fluid accumulation is associated with acute kidney injury and mortality in a cohort of patients with severe pneumonia caused by influenza a h1n1 virus. PLoS One 13 (2), e0192592 (2018) . [6] England, P. H. Influenza: the green book, chapter 19 (2020) . [7] Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Casas-Aparicio, G. A. et al. Aggressive fluid accumulation is associated with acute kidney injury and mortality in a cohort of patients with severe pneumonia caused by influenza a h1n1 virus. PLoS One 13 (2), e0192592 (2018) . [6] England, P. H. Influenza: the green book, chapter 19 (2020) . [7] Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). England, P. H. Influenza: the green book, chapter 19 (2020) . [7] Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  3. Wilde, J. A. et al. Effectiveness of influenza vaccine in health care professionals: a randomized trial. Jama 281 (10), 908–913 (1999) . [4] Watanabe, T. Renal complications of seasonal and pandemic influenza a virus infections. European journal of pediatrics 172 (1), 15–22 (2013) . [5] Casas-Aparicio, G. A. et al. Aggressive fluid accumulation is associated with acute kidney injury and mortality in a cohort of patients with severe pneumonia caused by influenza a h1n1 virus. PLoS One 13 (2), e0192592 (2018) . [6] England, P. H. Influenza: the green book, chapter 19 (2020) . [7] Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Watanabe, T. Renal complications of seasonal and pandemic influenza a virus infections. European journal of pediatrics 172 (1), 15–22 (2013) . [5] Casas-Aparicio, G. A. et al. Aggressive fluid accumulation is associated with acute kidney injury and mortality in a cohort of patients with severe pneumonia caused by influenza a h1n1 virus. PLoS One 13 (2), e0192592 (2018) . [6] England, P. H. Influenza: the green book, chapter 19 (2020) . [7] Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Casas-Aparicio, G. A. et al. Aggressive fluid accumulation is associated with acute kidney injury and mortality in a cohort of patients with severe pneumonia caused by influenza a h1n1 virus. PLoS One 13 (2), e0192592 (2018) . [6] England, P. H. Influenza: the green book, chapter 19 (2020) . [7] Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). England, P. H. Influenza: the green book, chapter 19 (2020) . [7] Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  4. Watanabe, T. Renal complications of seasonal and pandemic influenza a virus infections. European journal of pediatrics 172 (1), 15–22 (2013) . [5] Casas-Aparicio, G. A. et al. Aggressive fluid accumulation is associated with acute kidney injury and mortality in a cohort of patients with severe pneumonia caused by influenza a h1n1 virus. PLoS One 13 (2), e0192592 (2018) . [6] England, P. H. Influenza: the green book, chapter 19 (2020) . [7] Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Casas-Aparicio, G. A. et al. Aggressive fluid accumulation is associated with acute kidney injury and mortality in a cohort of patients with severe pneumonia caused by influenza a h1n1 virus. PLoS One 13 (2), e0192592 (2018) . [6] England, P. H. Influenza: the green book, chapter 19 (2020) . [7] Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). England, P. H. Influenza: the green book, chapter 19 (2020) . [7] Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  5. Casas-Aparicio, G. A. et al. Aggressive fluid accumulation is associated with acute kidney injury and mortality in a cohort of patients with severe pneumonia caused by influenza a h1n1 virus. PLoS One 13 (2), e0192592 (2018) . [6] England, P. H. Influenza: the green book, chapter 19 (2020) . [7] Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). England, P. H. Influenza: the green book, chapter 19 (2020) . [7] Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  6. England, P. H. Influenza: the green book, chapter 19 (2020) . [7] Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shaw, M. & Palese, P. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  7. Orthomyxoviridae, p 1151–1185. fields virology (2013). [8] Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mills, C. E., Robins, J. M. & Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  8. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904–906 (2004) . [9] Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asha, K. & Kumar, B. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  9. Emerging influenza d virus threat: what we know so far! Journal of Clinical Medicine 8 (2), 192 (2019) . [10] James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). James, S. H. & Whitley, R. J. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  10. in Influenza viruses 1465–1471 (Elsevier, 2017). [11] Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  11. Clayville, L. R. Influenza update: a review of currently available vaccines. Pharmacy and Therapeutics 36 (10), 659 (2011) . [12] Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  12. Vemula, S. V. et al. Current approaches for diagnosis of influenza virus infections in humans. Viruses 8 (4), 96 (2016) . [13] Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Fabijańska, A. & Grabowski, S. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  13. Viral genome deep classifier. IEEE Access 7, 81297–81307 (2019) . [14] Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Scarafoni, D., Telfer, B. A., Ricke, D. O., Thornton, J. R. & Comolli, J. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  14. Predicting influenza a tropism with end-to-end learning of deep networks. Health security 17 (6), 468–476 (2019) . [15] Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Ahsan, R. & Ebrahimi, M. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  15. The first implication of image processing techniques on influenza a virus sub-typing based on ha/na protein sequences, using convolutional deep neural network. bioRxiv 448159 (2018) . [16] Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, B., Tan, Z., Li, K., Jiang, T. & Peng, Y. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  16. Predicting the host of influenza viruses based on the word vector. PeerJ 5, e3579 (2017) . [17] Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  17. Kincaid, C. N-gram methods for influenza host classification, 105–107 (The Steering Committee of The World Congress in Computer Science, Computer …, 2018). [18] Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z., Weerakoon, A. M. & Lu, G. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  18. Integrating decision tree and hidden markov model (hmm) for subtype prediction of human influenza a virus, 52–58 (Springer, 2009). [19] Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Eng, C. L., Tong, J. C. & Tan, T. W. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  19. Predicting host tropism of influenza a virus proteins using random forest. BMC medical genomics 7 (3), 1–11 (2014) . [20] Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kwon, E., Cho, M., Kim, H. & Son, H. S. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  20. A study on host tropism determinants of influenza virus using machine learning. Current Bioinformatics 15 (2), 121–134 (2020) . [21] Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Mock, F., Viehweger, A., Barth, E. & Marz, M. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  21. Vidhop, viral host prediction with deep learning. Bioinformatics 37 (3), 318–325 (2021) . [22] Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Attaluri, P. K., Chen, Z. & Lu, G. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  22. Applying neural networks to classify influenza virus antigenic types and hosts, 1–6 (IEEE, 2010). [23] Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chrysostomou, C., Alexandrou, F., Nicolaou, M. A. & Seker, H. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  23. Classification of influenza hemagglutinin protein sequences using convolutional neural networks. arXiv preprint arXiv:2108.04240 (2021) . [24] Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Sherif, F. F., Zayed, N. & Fakhr, M. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  24. Classification of host origin in influenza a virus by transferring protein sequences into numerical feature vectors. Int J Biol Biomed Eng 11 (2017) . [25] Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yin, R., Zhou, X., Rashid, S. & Kwoh, C. K. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  25. Hopper: an adaptive model for probability estimation of influenza reassortment through host prediction. BMC medical genomics 13 (1), 1–13 (2020) . [26] George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  26. George, A. et al. Biometric face presentation attack detection with multi-channel convolutional neural network. IEEE Transactions on Information Forensics and Security 15, 42–55 (2019) . [27] Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  27. Chen, Y. et al. A multi-channel deep neural network for relation extraction. IEEE Access 8, 13195–13203 (2020) . [28] Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cao, Y., Liu, Z., Li, C., Li, J. & Chua, T.-S. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  28. Multi-channel graph neural network for entity alignment. arXiv preprint arXiv:1908.09898 (2019) . [29] Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Yang, Y., Wu, Q., Qiu, M., Wang, Y. & Chen, X. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  29. Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network, 1–7 (IEEE, 2018). [30] Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Kerzel, M., Ali, M., Ng, H. G. & Wermter, S. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  30. Haptic material classification with a multi-channel neural network, 439–446 (IEEE, 2017). [31] Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  31. Squires, R. B. et al. Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses 6 (6), 404–416 (2012) . [32] Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Shu, Y. & McCauley, J. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  32. Gisaid: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 22 (13), 30494 (2017) . [33] Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Asgari, E. & Mofrad, M. R. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  33. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10 (11), e0141287 (2015) . [34] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  34. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 220, 104740 (2022) . [35] Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Xu, Y. & Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  35. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. arXiv preprint arXiv:2207.13842 (2022) . [36] Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  36. On the properties of neural machine translation: Encoder-decoder approaches (2014). 1409.1259. [37] Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  37. Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems 30 (2017) . [38] Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  38. Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Scientific reports 11 (1), 1–13 (2021) . [39] Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  39. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) . [40] Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  40. Raffel, C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683 (2019) . [41] Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  41. Brown, T. et al. Language models are few-shot learners. Advances in neural information processing systems 33, 1877–1901 (2020) . [42] Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  42. Akosa, J. Predictive accuracy: A misleading performance measure for highly imbalanced data, Vol. 12 (2017). [43] Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. & Goadrich, M. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  43. The relationship between precision-recall and roc curves, 233–240 (2006). [44] Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  44. Bunescu, R. et al. Comparative experiments on learning information extractors for proteins and their interactions. Artificial intelligence in medicine 33 (2), 139–155 (2005) . [45] Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Bockhorst, J. & Craven, M. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  45. Markov networks for detecting overlapping elements in sequence data. Advances in Neural Information Processing Systems 17, 193–200 (2005) . [46] Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Goadrich, M., Oliphant, L. & Shavlik, J. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  46. Learning ensembles of first-order clauses for recall-precision curves: A case study in biomedical information extraction, 98–115 (Springer, 2004). [47] Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  47. Davis, J. et al. View learning for statistical relational learning: With an application to mammography., 677–683 (Citeseer, 2005). [48] Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015). Su, W., Yuan, Y. & Zhu, M. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
  48. A relationship between the average precision and the area under the roc curve, 349–352 (2015).
Citations (3)

Summary

We haven't generated a summary for this paper yet.